Cargando…
Computational Study to Determine When to Initiate and Alternate Therapy in HIV Infection
HIV is a widespread viral infection without cure. Drug treatment has transformed HIV disease into a treatable long-term infection. However, the appearance of mutations within the viral genome reduces the susceptibility of HIV to drugs. Therefore, a key goal is to extend the time until patients exhib...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4037596/ https://www.ncbi.nlm.nih.gov/pubmed/24900966 http://dx.doi.org/10.1155/2014/472869 |
Sumario: | HIV is a widespread viral infection without cure. Drug treatment has transformed HIV disease into a treatable long-term infection. However, the appearance of mutations within the viral genome reduces the susceptibility of HIV to drugs. Therefore, a key goal is to extend the time until patients exhibit resistance to all existing drugs. Current HIV treatment guidelines seem poorly supported as practitioners have not achieved a consensus on the optimal time to initiate and to switch antiretroviral treatments. We contribute to this discussion with predictions derived from a mathematical model of HIV dynamics. Our results indicate that early therapy initiation (within 2 years postinfection) is critical to delay AIDS progression. For patients who have not received any therapy during the first 3 years postinfection, switch in response to virological failure may outperform proactive switching strategies. In case that proactive switching is opted, the switching time between therapies should not be larger than 100 days. Further clinical trials are needed to either confirm or falsify these predictions. |
---|