Cargando…
Development of a Model to Aid NIRS Data Interpretation: Results from a Hypercapnia Study in Healthy Adults
The use of a mathematical model of cerebral physiology and metabolism may aid the interpretation of experimentally measured data. In this study, model outputs of tissue oxygen saturation (TOS) and velocity of blood in the middle cerebral artery (Vmca) were compared with experimentally measured signa...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038012/ https://www.ncbi.nlm.nih.gov/pubmed/22259116 http://dx.doi.org/10.1007/978-1-4614-1566-4_43 |
_version_ | 1782318316185976832 |
---|---|
author | Moroz, Tracy Banaji, Murad Tisdall, Martin Cooper, Chris E. Elwell, Clare E. Tachtsidis, Ilias |
author_facet | Moroz, Tracy Banaji, Murad Tisdall, Martin Cooper, Chris E. Elwell, Clare E. Tachtsidis, Ilias |
author_sort | Moroz, Tracy |
collection | PubMed |
description | The use of a mathematical model of cerebral physiology and metabolism may aid the interpretation of experimentally measured data. In this study, model outputs of tissue oxygen saturation (TOS) and velocity of blood in the middle cerebral artery (Vmca) were compared with experimentally measured signals (TOS using near infrared spectroscopy and Vmca using transcranial Doppler) acquired during hypercapnia in healthy volunteers. Initially, some systematic discrepancies between predicted and measured values of these variables were identified. The model was optimised to best fit the measured data by adjusting model parameters. To improve the fit, three additional model mechanisms were considered. These were: an extracerebral contribution to TOS, a change in venous volume with CO(2) levels, and a change in oxygen consumption with CO(2) levels. Each mechanism, when used alone, improved the fit of the model to the data, although significant parameter changes were necessary. It is likely that a combination of these mechanisms will improve the success of modelling of TOS and Vmca changes during hypercapnia. |
format | Online Article Text |
id | pubmed-4038012 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Springer |
record_format | MEDLINE/PubMed |
spelling | pubmed-40380122014-06-02 Development of a Model to Aid NIRS Data Interpretation: Results from a Hypercapnia Study in Healthy Adults Moroz, Tracy Banaji, Murad Tisdall, Martin Cooper, Chris E. Elwell, Clare E. Tachtsidis, Ilias Adv Exp Med Biol Article The use of a mathematical model of cerebral physiology and metabolism may aid the interpretation of experimentally measured data. In this study, model outputs of tissue oxygen saturation (TOS) and velocity of blood in the middle cerebral artery (Vmca) were compared with experimentally measured signals (TOS using near infrared spectroscopy and Vmca using transcranial Doppler) acquired during hypercapnia in healthy volunteers. Initially, some systematic discrepancies between predicted and measured values of these variables were identified. The model was optimised to best fit the measured data by adjusting model parameters. To improve the fit, three additional model mechanisms were considered. These were: an extracerebral contribution to TOS, a change in venous volume with CO(2) levels, and a change in oxygen consumption with CO(2) levels. Each mechanism, when used alone, improved the fit of the model to the data, although significant parameter changes were necessary. It is likely that a combination of these mechanisms will improve the success of modelling of TOS and Vmca changes during hypercapnia. Springer 2012 /pmc/articles/PMC4038012/ /pubmed/22259116 http://dx.doi.org/10.1007/978-1-4614-1566-4_43 Text en |
spellingShingle | Article Moroz, Tracy Banaji, Murad Tisdall, Martin Cooper, Chris E. Elwell, Clare E. Tachtsidis, Ilias Development of a Model to Aid NIRS Data Interpretation: Results from a Hypercapnia Study in Healthy Adults |
title | Development of a Model to Aid NIRS Data Interpretation: Results from a Hypercapnia Study in Healthy Adults |
title_full | Development of a Model to Aid NIRS Data Interpretation: Results from a Hypercapnia Study in Healthy Adults |
title_fullStr | Development of a Model to Aid NIRS Data Interpretation: Results from a Hypercapnia Study in Healthy Adults |
title_full_unstemmed | Development of a Model to Aid NIRS Data Interpretation: Results from a Hypercapnia Study in Healthy Adults |
title_short | Development of a Model to Aid NIRS Data Interpretation: Results from a Hypercapnia Study in Healthy Adults |
title_sort | development of a model to aid nirs data interpretation: results from a hypercapnia study in healthy adults |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038012/ https://www.ncbi.nlm.nih.gov/pubmed/22259116 http://dx.doi.org/10.1007/978-1-4614-1566-4_43 |
work_keys_str_mv | AT moroztracy developmentofamodeltoaidnirsdatainterpretationresultsfromahypercapniastudyinhealthyadults AT banajimurad developmentofamodeltoaidnirsdatainterpretationresultsfromahypercapniastudyinhealthyadults AT tisdallmartin developmentofamodeltoaidnirsdatainterpretationresultsfromahypercapniastudyinhealthyadults AT cooperchrise developmentofamodeltoaidnirsdatainterpretationresultsfromahypercapniastudyinhealthyadults AT elwellclaree developmentofamodeltoaidnirsdatainterpretationresultsfromahypercapniastudyinhealthyadults AT tachtsidisilias developmentofamodeltoaidnirsdatainterpretationresultsfromahypercapniastudyinhealthyadults |