Cargando…
Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice
Resection of DNA double-strand breaks (DSBs) is a pivotal step during which the choice between NHEJ and HR DNA repair pathways is made. While CDKs are known to control initiation of resection, their role in regulating long-range resection remains elusive. Here we show that CDKs 1/2 phosphorylate the...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4041212/ https://www.ncbi.nlm.nih.gov/pubmed/24705021 http://dx.doi.org/10.1038/ncomms4561 |
Sumario: | Resection of DNA double-strand breaks (DSBs) is a pivotal step during which the choice between NHEJ and HR DNA repair pathways is made. While CDKs are known to control initiation of resection, their role in regulating long-range resection remains elusive. Here we show that CDKs 1/2 phosphorylate the long-range resection nuclease EXO1 at four C-terminal S/TP sites during S/G2 phases of the cell cycle. Impairment of EXO1 phosphorylation attenuates resection, chromosomal integrity, cell survival, and HR, but augments NHEJ upon DNA damage. In contrast, cells expressing phospho-mimic EXO1 are proficient in resection even after CDK inhibition and favor HR over NHEJ. Mutation of cyclin-binding sites on EXO1 attenuates CDK binding and EXO1 phosphorylation, causing a resection defect that can be rescued by phospho-mimic mutations. Mechanistically, phosphorylation of EXO1 augments its recruitment to DNA breaks possibly via interactions with BRCA1. In sum, phosphorylation of EXO1 by CDKs is a novel mechanism regulating repair pathway choice. |
---|