Cargando…
Engineered zinc-finger transcription factors activate OCT4 (POU5F1), SOX2, KLF4, c-MYC (MYC) and miR302/367
Artificial transcription factors are powerful tools for regulating gene expression. Here we report results with engineered zinc-finger transcription factors (ZF-TFs) targeting four protein-coding genes, OCT4, SOX2, KLF4 and c-MYC, and one noncoding ribonucleic acid (RNA) gene, the microRNA (miRNA) m...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4041418/ https://www.ncbi.nlm.nih.gov/pubmed/24792165 http://dx.doi.org/10.1093/nar/gku243 |
Sumario: | Artificial transcription factors are powerful tools for regulating gene expression. Here we report results with engineered zinc-finger transcription factors (ZF-TFs) targeting four protein-coding genes, OCT4, SOX2, KLF4 and c-MYC, and one noncoding ribonucleic acid (RNA) gene, the microRNA (miRNA) miR302/367 cluster. We designed over 300 ZF-TFs whose targets lie within 1 kb of the transcriptional start sites (TSSs), screened them for increased messenger RNA or miRNA levels in transfected cells, and identified potent ZF-TF activators for each gene. Furthermore, we demonstrate that selected ZF-TFs function with alternative activation domains and in multiple cell lines. For OCT4, we expanded the target range to −2.5 kb and +500 bp relative to the TSS and identified additional active ZF-TFs, including three highly active ZF-TFs targeting distal enhancer, proximal enhancer and downstream from the proximal promoter. Chromatin immunoprecipitation (FLAG-ChIP) results indicate that several inactive ZF-TFs targeting within the same regulatory region bind as well as the most active ZF-TFs, suggesting that efficient binding within one of these regulatory regions may be necessary but not sufficient for activation. These results further our understanding of ZF-TF design principles and corroborate the use of ZF-TFs targeting enhancers and downstream from the TSS for transcriptional activation. |
---|