Cargando…
Modeling and Roles of Meteorological Factors in Outbreaks of Highly Pathogenic Avian Influenza H5N1
The highly pathogenic avian influenza A virus subtype H5N1 (HPAI H5N1) is a deadly zoonotic pathogen. Its persistence in poultry in several countries is a potential threat: a mutant or genetically reassorted progenitor might cause a human pandemic. Its world-wide eradication from poultry is importan...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4041756/ https://www.ncbi.nlm.nih.gov/pubmed/24886857 http://dx.doi.org/10.1371/journal.pone.0098471 |
_version_ | 1782318712085282816 |
---|---|
author | Biswas, Paritosh K. Islam, Md. Zohorul Debnath, Nitish C. Yamage, Mat |
author_facet | Biswas, Paritosh K. Islam, Md. Zohorul Debnath, Nitish C. Yamage, Mat |
author_sort | Biswas, Paritosh K. |
collection | PubMed |
description | The highly pathogenic avian influenza A virus subtype H5N1 (HPAI H5N1) is a deadly zoonotic pathogen. Its persistence in poultry in several countries is a potential threat: a mutant or genetically reassorted progenitor might cause a human pandemic. Its world-wide eradication from poultry is important to protect public health. The global trend of outbreaks of influenza attributable to HPAI H5N1 shows a clear seasonality. Meteorological factors might be associated with such trend but have not been studied. For the first time, we analyze the role of meteorological factors in the occurrences of HPAI outbreaks in Bangladesh. We employed autoregressive integrated moving average (ARIMA) and multiplicative seasonal autoregressive integrated moving average (SARIMA) to assess the roles of different meteorological factors in outbreaks of HPAI. Outbreaks were modeled best when multiplicative seasonality was incorporated. Incorporation of any meteorological variable(s) as inputs did not improve the performance of any multivariable models, but relative humidity (RH) was a significant covariate in several ARIMA and SARIMA models with different autoregressive and moving average orders. The variable cloud cover was also a significant covariate in two SARIMA models, but air temperature along with RH might be a predictor when moving average (MA) order at lag 1 month is considered. |
format | Online Article Text |
id | pubmed-4041756 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-40417562014-06-09 Modeling and Roles of Meteorological Factors in Outbreaks of Highly Pathogenic Avian Influenza H5N1 Biswas, Paritosh K. Islam, Md. Zohorul Debnath, Nitish C. Yamage, Mat PLoS One Research Article The highly pathogenic avian influenza A virus subtype H5N1 (HPAI H5N1) is a deadly zoonotic pathogen. Its persistence in poultry in several countries is a potential threat: a mutant or genetically reassorted progenitor might cause a human pandemic. Its world-wide eradication from poultry is important to protect public health. The global trend of outbreaks of influenza attributable to HPAI H5N1 shows a clear seasonality. Meteorological factors might be associated with such trend but have not been studied. For the first time, we analyze the role of meteorological factors in the occurrences of HPAI outbreaks in Bangladesh. We employed autoregressive integrated moving average (ARIMA) and multiplicative seasonal autoregressive integrated moving average (SARIMA) to assess the roles of different meteorological factors in outbreaks of HPAI. Outbreaks were modeled best when multiplicative seasonality was incorporated. Incorporation of any meteorological variable(s) as inputs did not improve the performance of any multivariable models, but relative humidity (RH) was a significant covariate in several ARIMA and SARIMA models with different autoregressive and moving average orders. The variable cloud cover was also a significant covariate in two SARIMA models, but air temperature along with RH might be a predictor when moving average (MA) order at lag 1 month is considered. Public Library of Science 2014-06-02 /pmc/articles/PMC4041756/ /pubmed/24886857 http://dx.doi.org/10.1371/journal.pone.0098471 Text en © 2014 Biswas et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Biswas, Paritosh K. Islam, Md. Zohorul Debnath, Nitish C. Yamage, Mat Modeling and Roles of Meteorological Factors in Outbreaks of Highly Pathogenic Avian Influenza H5N1 |
title | Modeling and Roles of Meteorological Factors in Outbreaks of Highly Pathogenic Avian Influenza H5N1 |
title_full | Modeling and Roles of Meteorological Factors in Outbreaks of Highly Pathogenic Avian Influenza H5N1 |
title_fullStr | Modeling and Roles of Meteorological Factors in Outbreaks of Highly Pathogenic Avian Influenza H5N1 |
title_full_unstemmed | Modeling and Roles of Meteorological Factors in Outbreaks of Highly Pathogenic Avian Influenza H5N1 |
title_short | Modeling and Roles of Meteorological Factors in Outbreaks of Highly Pathogenic Avian Influenza H5N1 |
title_sort | modeling and roles of meteorological factors in outbreaks of highly pathogenic avian influenza h5n1 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4041756/ https://www.ncbi.nlm.nih.gov/pubmed/24886857 http://dx.doi.org/10.1371/journal.pone.0098471 |
work_keys_str_mv | AT biswasparitoshk modelingandrolesofmeteorologicalfactorsinoutbreaksofhighlypathogenicavianinfluenzah5n1 AT islammdzohorul modelingandrolesofmeteorologicalfactorsinoutbreaksofhighlypathogenicavianinfluenzah5n1 AT debnathnitishc modelingandrolesofmeteorologicalfactorsinoutbreaksofhighlypathogenicavianinfluenzah5n1 AT yamagemat modelingandrolesofmeteorologicalfactorsinoutbreaksofhighlypathogenicavianinfluenzah5n1 |