Cargando…

Post genome-wide association studies functional characterization of prostate cancer risk loci

BACKGROUND: Over the last decade, genome-wide association studies (GWAS) have discovered many risk associated single nucleotide polymorphisms (SNPs) of prostate cancer (PCa). However, the majority of the associated PCa SNPs, including those in linkage disequilibrium (LD) blocks, are generally not lo...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Junfeng, Cui, Weirong, Vongsangnak, Wanwipa, Hu, Guang, Shen, Bairong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4042239/
https://www.ncbi.nlm.nih.gov/pubmed/24564736
http://dx.doi.org/10.1186/1471-2164-14-S8-S9
Descripción
Sumario:BACKGROUND: Over the last decade, genome-wide association studies (GWAS) have discovered many risk associated single nucleotide polymorphisms (SNPs) of prostate cancer (PCa). However, the majority of the associated PCa SNPs, including those in linkage disequilibrium (LD) blocks, are generally not located in protein coding regions. The systematical investigation of the functional roles of these SNPs, especially the non-coding SNPs, becomes very necessary and helpful to the understanding of the molecular mechanism of PCa. RESULTS: In this work, we proposed a comprehensive framework at network level to integrate the SNP annotation, target gene assignment, gene ontology (GO) classification, pathway enrichment analysis and regulatory network reconstruction to illustrate the molecular functions of PCa associated SNPs. By LD expansion, we first identified 1828 LD SNPs using 49 reported GWAS SNPs as a start. We carefully annotated these 1828 LD SNPs via either UCSC known genes, UCSC regulation elements, or expression Quantitative Trait Loci (eQTL) data. As a result, we found 1154 SNPs were functionally annotated and obtained 205 unique PCa genes for further enrichment analysis. The enriched GO biological processes and pathways were found mainly related to regulation of cell death, apoptosis, cell proliferation, and metabolic process, which have been proved essential to cancer development. We constructed PCa genes specific transcription regulatory networks, finding several important genetic regulators for PCa, such as IGF-1/IGF-2 receptors, SP1, CREB1, and androgen receptor (AR). CONCLUSIONS: A comprehensive framework was proposed for integrative and systematic analysis of PCa SNPs, the analysis can provide essential information for the understanding of the regulatory function of GWAS SNPs in PCa, and will facilitate the discovery of novel candidate biomarkers for diagnosis and prognosis of PCa.