Cargando…
Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning
This paper develops a statistical learning approach to identify potentially new high-temperature ferroelectric piezoelectric perovskite compounds. Unlike most computational studies on crystal chemistry, where the starting point is some form of electronic structure calculation, we use a data-driven a...
Autores principales: | Balachandran, Prasanna V., Broderick, Scott R., Rajan, Krishna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4042451/ https://www.ncbi.nlm.nih.gov/pubmed/24959095 http://dx.doi.org/10.1098/rspa.2010.0543 |
Ejemplares similares
-
Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning
por: Balachandran, Prasanna V., et al.
Publicado: (2018) -
Glory of piezoelectric perovskites
por: Uchino, Kenji
Publicado: (2015) -
Piezoelectric scattering limited mobility of hybrid organic-inorganic perovskites CH(3)NH(3)PbI(3)
por: Lu, Ying-Bo, et al.
Publicado: (2017) -
Oxygen Vacancies in Perovskite Oxide Piezoelectrics
por: Tyunina, Marina
Publicado: (2020) -
Room Temperature Processing of Inorganic Perovskite Films to Enable Flexible Solar Cells
por: Liu, Dianyi, et al.
Publicado: (2018)