Cargando…

Characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses

The calpains are a superfamily of proteases with extensive relevance to human health and welfare. Vast research attention is given to the vertebrate ‘classical’ subfamily, making it surprising that the evolutionary origins, distribution and relationships of these genes is poorly characterized. Conse...

Descripción completa

Detalles Bibliográficos
Autores principales: Macqueen, Daniel J., Wilcox, Alexander H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4043111/
https://www.ncbi.nlm.nih.gov/pubmed/24718597
http://dx.doi.org/10.1098/rsob.130219
_version_ 1782318876352053248
author Macqueen, Daniel J.
Wilcox, Alexander H.
author_facet Macqueen, Daniel J.
Wilcox, Alexander H.
author_sort Macqueen, Daniel J.
collection PubMed
description The calpains are a superfamily of proteases with extensive relevance to human health and welfare. Vast research attention is given to the vertebrate ‘classical’ subfamily, making it surprising that the evolutionary origins, distribution and relationships of these genes is poorly characterized. Consequently, there exists uncertainty about the conservation of gene family structure, function and expression that has been principally defined from work with mammals. Here, more than 200 vertebrate classical calpains were incorporated in phylogenetic analyses spanning an unprecedented range of taxa, including jawless and cartilaginous fish. We demonstrate that the common vertebrate ancestor had at least six classical calpains, including a single gene that gave rise to CAPN11, 1, 2 and 8 in the early jawed fish lineage, plus CAPN3, 9, 12, 13 and a novel calpain gene, hereafter named CAPN17. We reveal that while all vertebrate classical calpains have been subject to persistent purifying selection during evolution, the degree and nature of selective pressure has often been lineage-dependent. The tissue expression of the complete classic calpain family was assessed in representative teleost fish, amphibians, reptiles and mammals. This highlighted systematic divergence in expression across vertebrate taxa, with most classic calpain genes from fish and amphibians having more extensive tissue distribution than in amniotes. Our data suggest that classical calpain functions have frequently diverged during vertebrate evolution and challenge the ongoing value of the established system of classifying calpains by expression.
format Online
Article
Text
id pubmed-4043111
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-40431112014-06-10 Characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses Macqueen, Daniel J. Wilcox, Alexander H. Open Biol Research The calpains are a superfamily of proteases with extensive relevance to human health and welfare. Vast research attention is given to the vertebrate ‘classical’ subfamily, making it surprising that the evolutionary origins, distribution and relationships of these genes is poorly characterized. Consequently, there exists uncertainty about the conservation of gene family structure, function and expression that has been principally defined from work with mammals. Here, more than 200 vertebrate classical calpains were incorporated in phylogenetic analyses spanning an unprecedented range of taxa, including jawless and cartilaginous fish. We demonstrate that the common vertebrate ancestor had at least six classical calpains, including a single gene that gave rise to CAPN11, 1, 2 and 8 in the early jawed fish lineage, plus CAPN3, 9, 12, 13 and a novel calpain gene, hereafter named CAPN17. We reveal that while all vertebrate classical calpains have been subject to persistent purifying selection during evolution, the degree and nature of selective pressure has often been lineage-dependent. The tissue expression of the complete classic calpain family was assessed in representative teleost fish, amphibians, reptiles and mammals. This highlighted systematic divergence in expression across vertebrate taxa, with most classic calpain genes from fish and amphibians having more extensive tissue distribution than in amniotes. Our data suggest that classical calpain functions have frequently diverged during vertebrate evolution and challenge the ongoing value of the established system of classifying calpains by expression. The Royal Society 2014-04-09 /pmc/articles/PMC4043111/ /pubmed/24718597 http://dx.doi.org/10.1098/rsob.130219 Text en http://creativecommons.org/licenses/by/3.0/ © 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Research
Macqueen, Daniel J.
Wilcox, Alexander H.
Characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses
title Characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses
title_full Characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses
title_fullStr Characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses
title_full_unstemmed Characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses
title_short Characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses
title_sort characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4043111/
https://www.ncbi.nlm.nih.gov/pubmed/24718597
http://dx.doi.org/10.1098/rsob.130219
work_keys_str_mv AT macqueendanielj characterizationofthedefinitiveclassicalcalpainfamilyofvertebratesusingphylogeneticevolutionaryandexpressionanalyses
AT wilcoxalexanderh characterizationofthedefinitiveclassicalcalpainfamilyofvertebratesusingphylogeneticevolutionaryandexpressionanalyses