Cargando…

Activation of the TLR1/2 pathway induces the shaping of the immune response status of peripheral blood leukocytes

Toll-like receptors (TLRs) play an essential role in the activation and regulation of the innate and adaptive immune responses through the recognition of specific components of pathogens. TLR1/2 on the cell surface plays an important role in defending against Gram-positive bacteria. The aim of the p...

Descripción completa

Detalles Bibliográficos
Autores principales: PENG, YING, ZHANG, LI
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4043581/
https://www.ncbi.nlm.nih.gov/pubmed/24926371
http://dx.doi.org/10.3892/etm.2014.1621
Descripción
Sumario:Toll-like receptors (TLRs) play an essential role in the activation and regulation of the innate and adaptive immune responses through the recognition of specific components of pathogens. TLR1/2 on the cell surface plays an important role in defending against Gram-positive bacteria. The aim of the present study was to examine the expressional variation of immunomodulatory molecules in peripheral blood leukocytes (PBLs) treated with the TLR1/2 agonist, Pam3Cys. The quantitative polymerase chain reaction result showed dramatically increased expression of immune-related factors treated with Pam3Cys. Antibody-chip assays confirmed that activation of TLR1/2 could induce secretion of four important immune factors [interleukin (IL)-6, IL-8, macrophage inflammatory protein-1α and interferon-β). Western-blot analysis indicated the upregulation of three significant signal kinase proteins (phosphorylated signal transducer and activator of transcription 3, extracellular signal-related kinase and c-Jun N-terminal kinase 2). The study demonstrated that there were numerous molecules involved in the immune response of PBLs stimulated by the TLR1/2 ligand. Our future studies will focus on the mechanisms of these molecules in the TLR1/2 agonist-mediated immune response.