Cargando…
Preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes
Three tilmicosin-loaded hydrogenated castor oil nanoparticle (TMS-HCO-NP) suspensions of different particle sizes were prepared with different polyvinyl alcohol surfactant concentrations using a hot homogenization and ultrasonic technique. The in vitro release, in vitro antibacterial activity, mamma...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4043706/ https://www.ncbi.nlm.nih.gov/pubmed/24920902 http://dx.doi.org/10.2147/IJN.S58898 |
_version_ | 1782318969946898432 |
---|---|
author | Chen, Xiaojin Wang, Ting Lu, Mengmeng Zhu, Luyan Wang, Yan Zhou, WenZhong |
author_facet | Chen, Xiaojin Wang, Ting Lu, Mengmeng Zhu, Luyan Wang, Yan Zhou, WenZhong |
author_sort | Chen, Xiaojin |
collection | PubMed |
description | Three tilmicosin-loaded hydrogenated castor oil nanoparticle (TMS-HCO-NP) suspensions of different particle sizes were prepared with different polyvinyl alcohol surfactant concentrations using a hot homogenization and ultrasonic technique. The in vitro release, in vitro antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability study were conducted to evaluate the characteristics of the suspensions. The in vitro tilmicosin release rate, antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability of the suspensions were evaluated. When prepared with polyvinyl alcohol concentrations of 0.2%, 1%, and 5%, the mean diameters of the nanoparticles in the three suspensions were 920±35 nm, 452±10 nm, and 151±4 nm, respectively. The three suspensions displayed biphasic release profiles similar to that of freeze-dried TMS-HCO-NP powders, with the exception of having a faster initial release. Moreover, suspensions of smaller-sized particles showed faster initial release, and lower minimum inhibitory concentrations and minimum bactericidal concentrations. Time-kill curves showed that within 12 hours, the suspension with the 151 nm particles had the most potent bactericidal activity, but later, the suspensions with larger-sized particles showed increased antibacterial activity. None of the three suspensions were cytotoxic at clinical dosage levels. At higher drug concentrations, all three suspensions showed similar concentration-dependent cytotoxicity. The suspension with the smallest-sized particle showed significantly more acute toxicity in mice, perhaps due to faster drug release. All three suspensions exhibited good stability at 4°C and at room temperature for at least 6 months. These results demonstrate that TMS-HCO-NP suspensions can be a promising formulation for tilmicosin, and that nanoparticle size can be an important consideration for formulation development. |
format | Online Article Text |
id | pubmed-4043706 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-40437062014-06-11 Preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes Chen, Xiaojin Wang, Ting Lu, Mengmeng Zhu, Luyan Wang, Yan Zhou, WenZhong Int J Nanomedicine Original Research Three tilmicosin-loaded hydrogenated castor oil nanoparticle (TMS-HCO-NP) suspensions of different particle sizes were prepared with different polyvinyl alcohol surfactant concentrations using a hot homogenization and ultrasonic technique. The in vitro release, in vitro antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability study were conducted to evaluate the characteristics of the suspensions. The in vitro tilmicosin release rate, antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability of the suspensions were evaluated. When prepared with polyvinyl alcohol concentrations of 0.2%, 1%, and 5%, the mean diameters of the nanoparticles in the three suspensions were 920±35 nm, 452±10 nm, and 151±4 nm, respectively. The three suspensions displayed biphasic release profiles similar to that of freeze-dried TMS-HCO-NP powders, with the exception of having a faster initial release. Moreover, suspensions of smaller-sized particles showed faster initial release, and lower minimum inhibitory concentrations and minimum bactericidal concentrations. Time-kill curves showed that within 12 hours, the suspension with the 151 nm particles had the most potent bactericidal activity, but later, the suspensions with larger-sized particles showed increased antibacterial activity. None of the three suspensions were cytotoxic at clinical dosage levels. At higher drug concentrations, all three suspensions showed similar concentration-dependent cytotoxicity. The suspension with the smallest-sized particle showed significantly more acute toxicity in mice, perhaps due to faster drug release. All three suspensions exhibited good stability at 4°C and at room temperature for at least 6 months. These results demonstrate that TMS-HCO-NP suspensions can be a promising formulation for tilmicosin, and that nanoparticle size can be an important consideration for formulation development. Dove Medical Press 2014-05-27 /pmc/articles/PMC4043706/ /pubmed/24920902 http://dx.doi.org/10.2147/IJN.S58898 Text en © 2014 Chen et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Chen, Xiaojin Wang, Ting Lu, Mengmeng Zhu, Luyan Wang, Yan Zhou, WenZhong Preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes |
title | Preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes |
title_full | Preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes |
title_fullStr | Preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes |
title_full_unstemmed | Preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes |
title_short | Preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes |
title_sort | preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4043706/ https://www.ncbi.nlm.nih.gov/pubmed/24920902 http://dx.doi.org/10.2147/IJN.S58898 |
work_keys_str_mv | AT chenxiaojin preparationandevaluationoftilmicosinloadedhydrogenatedcastoroilnanoparticlesuspensionsofdifferentparticlesizes AT wangting preparationandevaluationoftilmicosinloadedhydrogenatedcastoroilnanoparticlesuspensionsofdifferentparticlesizes AT lumengmeng preparationandevaluationoftilmicosinloadedhydrogenatedcastoroilnanoparticlesuspensionsofdifferentparticlesizes AT zhuluyan preparationandevaluationoftilmicosinloadedhydrogenatedcastoroilnanoparticlesuspensionsofdifferentparticlesizes AT wangyan preparationandevaluationoftilmicosinloadedhydrogenatedcastoroilnanoparticlesuspensionsofdifferentparticlesizes AT zhouwenzhong preparationandevaluationoftilmicosinloadedhydrogenatedcastoroilnanoparticlesuspensionsofdifferentparticlesizes |