Cargando…
Event Detection using Twitter: A Spatio-Temporal Approach
BACKGROUND: Every day, around 400 million tweets are sent worldwide, which has become a rich source for detecting, monitoring and analysing news stories and special (disaster) events. Existing research within this field follows key words attributed to an event, monitoring temporal changes in word us...
Autores principales: | Cheng, Tao, Wicks, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4043742/ https://www.ncbi.nlm.nih.gov/pubmed/24893168 http://dx.doi.org/10.1371/journal.pone.0097807 |
Ejemplares similares
-
Spatio-Temporal Variation of Conversational Utterances on Twitter
por: Alis, Christian M., et al.
Publicado: (2013) -
Spatio-temporal Crime Analysis and Forecasting on Twitter Data Using Machine Learning Algorithms
por: Vivek, Meghashyam, et al.
Publicado: (2023) -
Modelling underreported spatio-temporal crime events
por: Riascos Villegas, Álvaro J., et al.
Publicado: (2023) -
Early classification of spatio-temporal events using partial information
por: Kandanaarachchi, Sevvandi, et al.
Publicado: (2020) -
Detecting spatio-temporal hotspots of scarlet fever in Taiwan with spatio-temporal Gi* statistic
por: Tang, Jia-Hong, et al.
Publicado: (2019)