Cargando…
The expression pattern of 19 genes predicts the histology of endometrial carcinoma
Cancer diagnosis and classification have traditionally been based on the assessment of morphology by microscopy. However, the histological classification system is challenging and demand for genetic information is increasing in the era of targeted and personalized molecular therapy. Recently accumul...
Autores principales: | Sung, Chang Ohk, Sohn, Insuk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4044625/ https://www.ncbi.nlm.nih.gov/pubmed/24894155 http://dx.doi.org/10.1038/srep05174 |
Ejemplares similares
-
Predictive Modeling Using a Somatic Mutational Profile in Ovarian High Grade Serous Carcinoma
por: Sohn, Insuk, et al.
Publicado: (2013) -
Clinical Relevance of Gain-Of-Function Mutations of p53 in High-Grade Serous Ovarian Carcinoma
por: Kang, Hyo Jeong, et al.
Publicado: (2013) -
Spontaneous mutations in the single TTN gene represent high tumor mutation burden
por: Oh, Ji-Hye, et al.
Publicado: (2020) -
Endometrial histology and predictable clinical factors for endometrial disease in women with polycystic ovary syndrome
por: Park, Joon Cheol, et al.
Publicado: (2011) -
Histological Grade of Endometrioid Endometrial Cancer and Relapse Risk Can Be Predicted with Machine Learning from Gene Expression Data
por: Gargya, Péter, et al.
Publicado: (2021)