Cargando…

Bioavailability of Oil-Based and β-Lactoglobulin-Complexed Vitamin A in a Rat Model

β-Lactoglobulin is capable of binding fat-soluble compounds including vitamin A palmitate and is suggested to specifically enhance intestinal uptake of retinol. In this study, bioavailability of a vitamin-A-retinyl palmitate complex in skim milk and in water-based liquids was investigated in vitamin...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Ying, Shaw, Ju-Jean, Swaisgood, Harold E., Allen, Jonathan C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045273/
https://www.ncbi.nlm.nih.gov/pubmed/24967254
http://dx.doi.org/10.5402/2013/270580
Descripción
Sumario:β-Lactoglobulin is capable of binding fat-soluble compounds including vitamin A palmitate and is suggested to specifically enhance intestinal uptake of retinol. In this study, bioavailability of a vitamin-A-retinyl palmitate complex in skim milk and in water-based liquids was investigated in vitamin-A-depleted rats. First, rats were fed a vitamin-A-free pellet diet for 6 wk and were thereafter gavage-fed with vitamin A in oil, vitamin-A-β-lactoglobulin complex, vitamin A in oil + skim milk, and vitamin-A-β-lactoglobulin + skim milk for 2 wk and 42 wk. Vitamin A repletion, as judged by vitamin A accumulation in serum and liver, occurred in all the treatments. Vitamin-A-β-lactoglobulin complex treatments had statistical equivalence with oil-based vitamin A treatments. In a second experiment, vitamin-A-depleted rats were fed UHT-processed skim milk fortified with either oil-based or freeze-dried β-lactoglobulin-complexed retinyl palmitate. Liver and serum vitamin A were analyzed by HPLC to indicate vitamin A status in the rats. Results showed no significant difference in bioavailability of retinyl palmitate from milk made with either regular oil-based or β-lactoglobulin-complexed fortifiers. The vitamin-A-β-lactoglobulin complex, being water soluble, may be useful for fortification of nonfat products.