Cargando…
Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time-Frequency Domains
Technically, a feature represents a distinguishing property, a recognizable measurement, and a functional component obtained from a section of a pattern. Extracted features are meant to minimize the loss of important information embedded in the signal. In addition, they also simplify the amount of r...
Autores principales: | Al-Fahoum, Amjed S., Al-Fraihat, Ausilah A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045570/ https://www.ncbi.nlm.nih.gov/pubmed/24967316 http://dx.doi.org/10.1155/2014/730218 |
Ejemplares similares
-
An EEG-based attention recognition method: fusion of time domain, frequency domain, and non-linear dynamics features
por: Chen, Di, et al.
Publicado: (2023) -
A Biologically Inspired Approach to Frequency Domain Feature Extraction for EEG Classification
por: Gursel Ozmen, Nurhan, et al.
Publicado: (2018) -
Detection of epileptiform activity in EEG signals based on time-frequency and non-linear analysis
por: Gajic, Dragoljub, et al.
Publicado: (2015) -
Time-Frequency Analysis of EEG Signals and GLCM Features for Depth of Anesthesia Monitoring
por: Mousavi, Seyed Mortaza, et al.
Publicado: (2021) -
Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification
por: Wen, Tingxi, et al.
Publicado: (2017)