Cargando…
Aspiration-Based Partner Switching Boosts Cooperation in Social Dilemmas
Most previous studies concerning linking dynamics often assumed that links pairing individuals should be identified and treated differently during topology adjusting procedure, in order to promote cooperation. A common assumption was that cooperators were expected to avoid being exploited by quickly...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045582/ https://www.ncbi.nlm.nih.gov/pubmed/24896269 http://dx.doi.org/10.1371/journal.pone.0097866 |
Sumario: | Most previous studies concerning linking dynamics often assumed that links pairing individuals should be identified and treated differently during topology adjusting procedure, in order to promote cooperation. A common assumption was that cooperators were expected to avoid being exploited by quickly breaking up relationships with defectors. Then the so-called prosocial links linking two cooperators (abbreviated as CC links hereafter) would be much favored by evolution, whereby cooperation was promoted. However, we suggest that this is not always necessary. Here, we developed a minimal model in which an aspiration-based partner switching mechanism was embedded to regulate the evolution of cooperation in social dilemmas. Individuals adjusted social ties in a self-questioning manner in line with the learning theory. Less game information was involved during dynamic linking and all links were tackled anonymously irrespective of their types (i.e., CD links, DD links, or CC links). The main results indicate that cooperation flourishes for a broad range of parameters. The denser the underlying network, the more difficult the evolution of cooperation. More importantly, moderate aspirations do much better in promoting the evolution of altruistic behavior and for most cases there exists the optimal aspiration level that most benefits cooperation. Too strong or too weak selection intensity turns out to be pretty conducive to the evolution of cooperation in such a dynamical system. |
---|