Cargando…
Fast stray field computation on tensor grids
A direct integration algorithm is described to compute the magnetostatic field and energy for given magnetization distributions on not necessarily uniform tensor grids. We use an analytically-based tensor approximation approach for function-related tensors, which reduces calculations to multilinear...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045588/ https://www.ncbi.nlm.nih.gov/pubmed/24910469 http://dx.doi.org/10.1016/j.jcp.2011.12.030 |
_version_ | 1782319346620563456 |
---|---|
author | Exl, L. Auzinger, W. Bance, S. Gusenbauer, M. Reichel, F. Schrefl, T. |
author_facet | Exl, L. Auzinger, W. Bance, S. Gusenbauer, M. Reichel, F. Schrefl, T. |
author_sort | Exl, L. |
collection | PubMed |
description | A direct integration algorithm is described to compute the magnetostatic field and energy for given magnetization distributions on not necessarily uniform tensor grids. We use an analytically-based tensor approximation approach for function-related tensors, which reduces calculations to multilinear algebra operations. The algorithm scales with N(4/3) for N computational cells used and with N(2/3) (sublinear) when magnetization is given in canonical tensor format. In the final section we confirm our theoretical results concerning computing times and accuracy by means of numerical examples. |
format | Online Article Text |
id | pubmed-4045588 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Academic Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-40455882014-06-06 Fast stray field computation on tensor grids Exl, L. Auzinger, W. Bance, S. Gusenbauer, M. Reichel, F. Schrefl, T. J Comput Phys Article A direct integration algorithm is described to compute the magnetostatic field and energy for given magnetization distributions on not necessarily uniform tensor grids. We use an analytically-based tensor approximation approach for function-related tensors, which reduces calculations to multilinear algebra operations. The algorithm scales with N(4/3) for N computational cells used and with N(2/3) (sublinear) when magnetization is given in canonical tensor format. In the final section we confirm our theoretical results concerning computing times and accuracy by means of numerical examples. Academic Press 2012-04-01 /pmc/articles/PMC4045588/ /pubmed/24910469 http://dx.doi.org/10.1016/j.jcp.2011.12.030 Text en © 2012 Elsevier Inc. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/3.0/ Open Access under CC BY-NC-ND 3.0 (https://creativecommons.org/licenses/by-nc-nd/3.0/) license |
spellingShingle | Article Exl, L. Auzinger, W. Bance, S. Gusenbauer, M. Reichel, F. Schrefl, T. Fast stray field computation on tensor grids |
title | Fast stray field computation on tensor grids |
title_full | Fast stray field computation on tensor grids |
title_fullStr | Fast stray field computation on tensor grids |
title_full_unstemmed | Fast stray field computation on tensor grids |
title_short | Fast stray field computation on tensor grids |
title_sort | fast stray field computation on tensor grids |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045588/ https://www.ncbi.nlm.nih.gov/pubmed/24910469 http://dx.doi.org/10.1016/j.jcp.2011.12.030 |
work_keys_str_mv | AT exll faststrayfieldcomputationontensorgrids AT auzingerw faststrayfieldcomputationontensorgrids AT bances faststrayfieldcomputationontensorgrids AT gusenbauerm faststrayfieldcomputationontensorgrids AT reichelf faststrayfieldcomputationontensorgrids AT schreflt faststrayfieldcomputationontensorgrids |