Cargando…

Fast stray field computation on tensor grids

A direct integration algorithm is described to compute the magnetostatic field and energy for given magnetization distributions on not necessarily uniform tensor grids. We use an analytically-based tensor approximation approach for function-related tensors, which reduces calculations to multilinear...

Descripción completa

Detalles Bibliográficos
Autores principales: Exl, L., Auzinger, W., Bance, S., Gusenbauer, M., Reichel, F., Schrefl, T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045588/
https://www.ncbi.nlm.nih.gov/pubmed/24910469
http://dx.doi.org/10.1016/j.jcp.2011.12.030
_version_ 1782319346620563456
author Exl, L.
Auzinger, W.
Bance, S.
Gusenbauer, M.
Reichel, F.
Schrefl, T.
author_facet Exl, L.
Auzinger, W.
Bance, S.
Gusenbauer, M.
Reichel, F.
Schrefl, T.
author_sort Exl, L.
collection PubMed
description A direct integration algorithm is described to compute the magnetostatic field and energy for given magnetization distributions on not necessarily uniform tensor grids. We use an analytically-based tensor approximation approach for function-related tensors, which reduces calculations to multilinear algebra operations. The algorithm scales with N(4/3) for N computational cells used and with N(2/3) (sublinear) when magnetization is given in canonical tensor format. In the final section we confirm our theoretical results concerning computing times and accuracy by means of numerical examples.
format Online
Article
Text
id pubmed-4045588
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Academic Press
record_format MEDLINE/PubMed
spelling pubmed-40455882014-06-06 Fast stray field computation on tensor grids Exl, L. Auzinger, W. Bance, S. Gusenbauer, M. Reichel, F. Schrefl, T. J Comput Phys Article A direct integration algorithm is described to compute the magnetostatic field and energy for given magnetization distributions on not necessarily uniform tensor grids. We use an analytically-based tensor approximation approach for function-related tensors, which reduces calculations to multilinear algebra operations. The algorithm scales with N(4/3) for N computational cells used and with N(2/3) (sublinear) when magnetization is given in canonical tensor format. In the final section we confirm our theoretical results concerning computing times and accuracy by means of numerical examples. Academic Press 2012-04-01 /pmc/articles/PMC4045588/ /pubmed/24910469 http://dx.doi.org/10.1016/j.jcp.2011.12.030 Text en © 2012 Elsevier Inc. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/3.0/ Open Access under CC BY-NC-ND 3.0 (https://creativecommons.org/licenses/by-nc-nd/3.0/) license
spellingShingle Article
Exl, L.
Auzinger, W.
Bance, S.
Gusenbauer, M.
Reichel, F.
Schrefl, T.
Fast stray field computation on tensor grids
title Fast stray field computation on tensor grids
title_full Fast stray field computation on tensor grids
title_fullStr Fast stray field computation on tensor grids
title_full_unstemmed Fast stray field computation on tensor grids
title_short Fast stray field computation on tensor grids
title_sort fast stray field computation on tensor grids
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045588/
https://www.ncbi.nlm.nih.gov/pubmed/24910469
http://dx.doi.org/10.1016/j.jcp.2011.12.030
work_keys_str_mv AT exll faststrayfieldcomputationontensorgrids
AT auzingerw faststrayfieldcomputationontensorgrids
AT bances faststrayfieldcomputationontensorgrids
AT gusenbauerm faststrayfieldcomputationontensorgrids
AT reichelf faststrayfieldcomputationontensorgrids
AT schreflt faststrayfieldcomputationontensorgrids