Cargando…

A new method to disperse CdS quantum dot-sensitized TiO(2) nanotube arrays into P3HT:PCBM layer for the improvement of efficiency of inverted polymer solar cells

We report that the efficiency of ITO/nc-TiO(2)/P3HT:PCBM/MoO(3)/Ag inverted polymer solar cells (PSCs) can be improved by dispersing CdS quantum dot (QD)-sensitized TiO(2) nanotube arrays (TNTs) in poly (3-hexylthiophene) and [6,6]-phenyl-C(61)-butyric acid methyl ester (P3HT:PCBM) layer. The CdS QD...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Fumin, Chen, Chong, Tan, Furui, Yue, Gentian, Shen, Liang, Zhang, Weifeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046037/
https://www.ncbi.nlm.nih.gov/pubmed/24936158
http://dx.doi.org/10.1186/1556-276X-9-240
_version_ 1782319439915515904
author Li, Fumin
Chen, Chong
Tan, Furui
Yue, Gentian
Shen, Liang
Zhang, Weifeng
author_facet Li, Fumin
Chen, Chong
Tan, Furui
Yue, Gentian
Shen, Liang
Zhang, Weifeng
author_sort Li, Fumin
collection PubMed
description We report that the efficiency of ITO/nc-TiO(2)/P3HT:PCBM/MoO(3)/Ag inverted polymer solar cells (PSCs) can be improved by dispersing CdS quantum dot (QD)-sensitized TiO(2) nanotube arrays (TNTs) in poly (3-hexylthiophene) and [6,6]-phenyl-C(61)-butyric acid methyl ester (P3HT:PCBM) layer. The CdS QDs are deposited on the TNTs by a chemical bath deposition method. The experimental results show that the CdS QD-sensitized TNTs (CdS/TNTs) do not only increase the light absorption of the P3HT:PCBM layer but also reduce the charge recombination in the P3HT:PCBM layer. The dependence of device performances on cycles of CdS deposition on the TNTs was investigated. A high power conversion efficiency (PCE) of 3.52% was achieved for the inverted PSCs with 20 cyclic depositions of CdS on TNTs, which showed a 34% increase compared to the ITO/nc-TiO(2)/P3HT:PCBM/MoO(3)/Ag device without the CdS/TNTs. The improved efficiency is attributed to the improved light absorbance and the reduced charge recombination in the active layer.
format Online
Article
Text
id pubmed-4046037
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Springer
record_format MEDLINE/PubMed
spelling pubmed-40460372014-06-16 A new method to disperse CdS quantum dot-sensitized TiO(2) nanotube arrays into P3HT:PCBM layer for the improvement of efficiency of inverted polymer solar cells Li, Fumin Chen, Chong Tan, Furui Yue, Gentian Shen, Liang Zhang, Weifeng Nanoscale Res Lett Nano Express We report that the efficiency of ITO/nc-TiO(2)/P3HT:PCBM/MoO(3)/Ag inverted polymer solar cells (PSCs) can be improved by dispersing CdS quantum dot (QD)-sensitized TiO(2) nanotube arrays (TNTs) in poly (3-hexylthiophene) and [6,6]-phenyl-C(61)-butyric acid methyl ester (P3HT:PCBM) layer. The CdS QDs are deposited on the TNTs by a chemical bath deposition method. The experimental results show that the CdS QD-sensitized TNTs (CdS/TNTs) do not only increase the light absorption of the P3HT:PCBM layer but also reduce the charge recombination in the P3HT:PCBM layer. The dependence of device performances on cycles of CdS deposition on the TNTs was investigated. A high power conversion efficiency (PCE) of 3.52% was achieved for the inverted PSCs with 20 cyclic depositions of CdS on TNTs, which showed a 34% increase compared to the ITO/nc-TiO(2)/P3HT:PCBM/MoO(3)/Ag device without the CdS/TNTs. The improved efficiency is attributed to the improved light absorbance and the reduced charge recombination in the active layer. Springer 2014-05-16 /pmc/articles/PMC4046037/ /pubmed/24936158 http://dx.doi.org/10.1186/1556-276X-9-240 Text en Copyright © 2014 Li et al.; licensee Springer. http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
spellingShingle Nano Express
Li, Fumin
Chen, Chong
Tan, Furui
Yue, Gentian
Shen, Liang
Zhang, Weifeng
A new method to disperse CdS quantum dot-sensitized TiO(2) nanotube arrays into P3HT:PCBM layer for the improvement of efficiency of inverted polymer solar cells
title A new method to disperse CdS quantum dot-sensitized TiO(2) nanotube arrays into P3HT:PCBM layer for the improvement of efficiency of inverted polymer solar cells
title_full A new method to disperse CdS quantum dot-sensitized TiO(2) nanotube arrays into P3HT:PCBM layer for the improvement of efficiency of inverted polymer solar cells
title_fullStr A new method to disperse CdS quantum dot-sensitized TiO(2) nanotube arrays into P3HT:PCBM layer for the improvement of efficiency of inverted polymer solar cells
title_full_unstemmed A new method to disperse CdS quantum dot-sensitized TiO(2) nanotube arrays into P3HT:PCBM layer for the improvement of efficiency of inverted polymer solar cells
title_short A new method to disperse CdS quantum dot-sensitized TiO(2) nanotube arrays into P3HT:PCBM layer for the improvement of efficiency of inverted polymer solar cells
title_sort new method to disperse cds quantum dot-sensitized tio(2) nanotube arrays into p3ht:pcbm layer for the improvement of efficiency of inverted polymer solar cells
topic Nano Express
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046037/
https://www.ncbi.nlm.nih.gov/pubmed/24936158
http://dx.doi.org/10.1186/1556-276X-9-240
work_keys_str_mv AT lifumin anewmethodtodispersecdsquantumdotsensitizedtio2nanotubearraysintop3htpcbmlayerfortheimprovementofefficiencyofinvertedpolymersolarcells
AT chenchong anewmethodtodispersecdsquantumdotsensitizedtio2nanotubearraysintop3htpcbmlayerfortheimprovementofefficiencyofinvertedpolymersolarcells
AT tanfurui anewmethodtodispersecdsquantumdotsensitizedtio2nanotubearraysintop3htpcbmlayerfortheimprovementofefficiencyofinvertedpolymersolarcells
AT yuegentian anewmethodtodispersecdsquantumdotsensitizedtio2nanotubearraysintop3htpcbmlayerfortheimprovementofefficiencyofinvertedpolymersolarcells
AT shenliang anewmethodtodispersecdsquantumdotsensitizedtio2nanotubearraysintop3htpcbmlayerfortheimprovementofefficiencyofinvertedpolymersolarcells
AT zhangweifeng anewmethodtodispersecdsquantumdotsensitizedtio2nanotubearraysintop3htpcbmlayerfortheimprovementofefficiencyofinvertedpolymersolarcells
AT lifumin newmethodtodispersecdsquantumdotsensitizedtio2nanotubearraysintop3htpcbmlayerfortheimprovementofefficiencyofinvertedpolymersolarcells
AT chenchong newmethodtodispersecdsquantumdotsensitizedtio2nanotubearraysintop3htpcbmlayerfortheimprovementofefficiencyofinvertedpolymersolarcells
AT tanfurui newmethodtodispersecdsquantumdotsensitizedtio2nanotubearraysintop3htpcbmlayerfortheimprovementofefficiencyofinvertedpolymersolarcells
AT yuegentian newmethodtodispersecdsquantumdotsensitizedtio2nanotubearraysintop3htpcbmlayerfortheimprovementofefficiencyofinvertedpolymersolarcells
AT shenliang newmethodtodispersecdsquantumdotsensitizedtio2nanotubearraysintop3htpcbmlayerfortheimprovementofefficiencyofinvertedpolymersolarcells
AT zhangweifeng newmethodtodispersecdsquantumdotsensitizedtio2nanotubearraysintop3htpcbmlayerfortheimprovementofefficiencyofinvertedpolymersolarcells