Cargando…
Molecular pathway identification using biological network-regularized logistic models
BACKGROUND: Selecting genes and pathways indicative of disease is a central problem in computational biology. This problem is especially challenging when parsing multi-dimensional genomic data. A number of tools, such as L(1)-norm based regularization and its extensions elastic net and fused lasso,...
Autores principales: | Zhang, Wen, Wan, Ying-wooi, Allen, Genevera I, Pang, Kaifang, Anderson, Matthew L, Liu, Zhandong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046566/ https://www.ncbi.nlm.nih.gov/pubmed/24564637 http://dx.doi.org/10.1186/1471-2164-14-S8-S7 |
Ejemplares similares
-
XMRF: an R package to fit Markov Networks to high-throughput genetics data
por: Wan, Ying-Wooi, et al.
Publicado: (2016) -
On the Reproducibility of TCGA Ovarian Cancer MicroRNA Profiles
por: Wan, Ying-Wooi, et al.
Publicado: (2014) -
Digital sorting of complex tissues for cell type-specific gene expression profiles
por: Zhong, Yi, et al.
Publicado: (2013) -
Network-Based Identification of Biomarkers Coexpressed with Multiple Pathways
por: Guo, Nancy Lan, et al.
Publicado: (2014) -
Regularized logistic regression with network-based pairwise interaction for biomarker identification in breast cancer
por: Wu, Meng-Yun, et al.
Publicado: (2016)