Cargando…

Genome-wide survey and expression profiles of the AP2/ERF family in castor bean (Ricinus communis L.)

BACKGROUND: The AP2/ERF transcription factor, one of the largest gene families in plants, plays a crucial role in the regulation of growth and development, metabolism, and responses to biotic and abiotic stresses. Castor bean (Ricinus communis L., Euphobiaceae) is one of most important non-edible oi...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Wei, Li, Fei, Ling, Lizhen, Liu, Aizhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046667/
https://www.ncbi.nlm.nih.gov/pubmed/24225250
http://dx.doi.org/10.1186/1471-2164-14-785
Descripción
Sumario:BACKGROUND: The AP2/ERF transcription factor, one of the largest gene families in plants, plays a crucial role in the regulation of growth and development, metabolism, and responses to biotic and abiotic stresses. Castor bean (Ricinus communis L., Euphobiaceae) is one of most important non-edible oilseed crops and its seed oil is broadly used for industrial applications. The available genome provides a great chance to identify and characterize the global information on AP2/ERF transcription factors in castor bean, which might provide insights in understanding the molecular basis of the AP2/ERF family in castor bean. RESULTS: A total of 114 AP2/ERF transcription factors were identified based on the genome in castor bean. According to the number of the AP2/ERF domain, the conserved amino acid residues within AP2/ERF domain, the conserved motifs and gene organization in structure, and phylogenetical analysis, the identified 114 AP2/ERF transcription factors were characterized. Global expression profiles among different tissues using high-throughput sequencing of digital gene expression profiles (DGEs) displayed diverse expression patterns that may provide basic information in understanding the function of the AP2/ERF gene family in castor bean. CONCLUSIONS: The current study is the first report on identification and characterization of the AP2/ERF transcription factors based on the genome of castor bean in the family Euphobiaceae. Results obtained from this study provide valuable information in understanding the molecular basis of the AP2/ERF family in castor bean. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-14-785) contains supplementary material, which is available to authorized users.