Cargando…

Tunable Protease-Activatable Virus Nanonodes

[Image: see text] We explored the unique signal integration properties of the self-assembling 60-mer protein capsid of adeno-associated virus (AAV), a clinically proven human gene therapy vector, by engineering proteolytic regulation of virus–receptor interactions such that processing of the capsid...

Descripción completa

Detalles Bibliográficos
Autores principales: Judd, Justin, Ho, Michelle L., Tiwari, Abhinav, Gomez, Eric J., Dempsey, Christopher, Van Vliet, Kim, Igoshin, Oleg A., Silberg, Jonathan J., Agbandje-McKenna, Mavis, Suh, Junghae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046807/
https://www.ncbi.nlm.nih.gov/pubmed/24796495
http://dx.doi.org/10.1021/nn500550q
_version_ 1782480317159833600
author Judd, Justin
Ho, Michelle L.
Tiwari, Abhinav
Gomez, Eric J.
Dempsey, Christopher
Van Vliet, Kim
Igoshin, Oleg A.
Silberg, Jonathan J.
Agbandje-McKenna, Mavis
Suh, Junghae
author_facet Judd, Justin
Ho, Michelle L.
Tiwari, Abhinav
Gomez, Eric J.
Dempsey, Christopher
Van Vliet, Kim
Igoshin, Oleg A.
Silberg, Jonathan J.
Agbandje-McKenna, Mavis
Suh, Junghae
author_sort Judd, Justin
collection PubMed
description [Image: see text] We explored the unique signal integration properties of the self-assembling 60-mer protein capsid of adeno-associated virus (AAV), a clinically proven human gene therapy vector, by engineering proteolytic regulation of virus–receptor interactions such that processing of the capsid by proteases is required for infection. We find the transfer function of our engineered protease-activatable viruses (PAVs), relating the degree of proteolysis (input) to PAV activity (output), is highly nonlinear, likely due to increased polyvalency. By exploiting this dynamic polyvalency, in combination with the self-assembly properties of the virus capsid, we show that mosaic PAVs can be constructed that operate under a digital AND gate regime, where two different protease inputs are required for virus activation. These results show viruses can be engineered as signal-integrating nanoscale nodes whose functional properties are regulated by multiple proteolytic signals with easily tunable and predictable response surfaces, a promising development toward advanced control of gene delivery.
format Online
Article
Text
id pubmed-4046807
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-40468072015-05-05 Tunable Protease-Activatable Virus Nanonodes Judd, Justin Ho, Michelle L. Tiwari, Abhinav Gomez, Eric J. Dempsey, Christopher Van Vliet, Kim Igoshin, Oleg A. Silberg, Jonathan J. Agbandje-McKenna, Mavis Suh, Junghae ACS Nano [Image: see text] We explored the unique signal integration properties of the self-assembling 60-mer protein capsid of adeno-associated virus (AAV), a clinically proven human gene therapy vector, by engineering proteolytic regulation of virus–receptor interactions such that processing of the capsid by proteases is required for infection. We find the transfer function of our engineered protease-activatable viruses (PAVs), relating the degree of proteolysis (input) to PAV activity (output), is highly nonlinear, likely due to increased polyvalency. By exploiting this dynamic polyvalency, in combination with the self-assembly properties of the virus capsid, we show that mosaic PAVs can be constructed that operate under a digital AND gate regime, where two different protease inputs are required for virus activation. These results show viruses can be engineered as signal-integrating nanoscale nodes whose functional properties are regulated by multiple proteolytic signals with easily tunable and predictable response surfaces, a promising development toward advanced control of gene delivery. American Chemical Society 2014-05-05 2014-05-27 /pmc/articles/PMC4046807/ /pubmed/24796495 http://dx.doi.org/10.1021/nn500550q Text en Copyright © 2014 American Chemical Society
spellingShingle Judd, Justin
Ho, Michelle L.
Tiwari, Abhinav
Gomez, Eric J.
Dempsey, Christopher
Van Vliet, Kim
Igoshin, Oleg A.
Silberg, Jonathan J.
Agbandje-McKenna, Mavis
Suh, Junghae
Tunable Protease-Activatable Virus Nanonodes
title Tunable Protease-Activatable Virus Nanonodes
title_full Tunable Protease-Activatable Virus Nanonodes
title_fullStr Tunable Protease-Activatable Virus Nanonodes
title_full_unstemmed Tunable Protease-Activatable Virus Nanonodes
title_short Tunable Protease-Activatable Virus Nanonodes
title_sort tunable protease-activatable virus nanonodes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046807/
https://www.ncbi.nlm.nih.gov/pubmed/24796495
http://dx.doi.org/10.1021/nn500550q
work_keys_str_mv AT juddjustin tunableproteaseactivatablevirusnanonodes
AT homichellel tunableproteaseactivatablevirusnanonodes
AT tiwariabhinav tunableproteaseactivatablevirusnanonodes
AT gomezericj tunableproteaseactivatablevirusnanonodes
AT dempseychristopher tunableproteaseactivatablevirusnanonodes
AT vanvlietkim tunableproteaseactivatablevirusnanonodes
AT igoshinolega tunableproteaseactivatablevirusnanonodes
AT silbergjonathanj tunableproteaseactivatablevirusnanonodes
AT agbandjemckennamavis tunableproteaseactivatablevirusnanonodes
AT suhjunghae tunableproteaseactivatablevirusnanonodes