Cargando…
Tunable Protease-Activatable Virus Nanonodes
[Image: see text] We explored the unique signal integration properties of the self-assembling 60-mer protein capsid of adeno-associated virus (AAV), a clinically proven human gene therapy vector, by engineering proteolytic regulation of virus–receptor interactions such that processing of the capsid...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046807/ https://www.ncbi.nlm.nih.gov/pubmed/24796495 http://dx.doi.org/10.1021/nn500550q |
_version_ | 1782480317159833600 |
---|---|
author | Judd, Justin Ho, Michelle L. Tiwari, Abhinav Gomez, Eric J. Dempsey, Christopher Van Vliet, Kim Igoshin, Oleg A. Silberg, Jonathan J. Agbandje-McKenna, Mavis Suh, Junghae |
author_facet | Judd, Justin Ho, Michelle L. Tiwari, Abhinav Gomez, Eric J. Dempsey, Christopher Van Vliet, Kim Igoshin, Oleg A. Silberg, Jonathan J. Agbandje-McKenna, Mavis Suh, Junghae |
author_sort | Judd, Justin |
collection | PubMed |
description | [Image: see text] We explored the unique signal integration properties of the self-assembling 60-mer protein capsid of adeno-associated virus (AAV), a clinically proven human gene therapy vector, by engineering proteolytic regulation of virus–receptor interactions such that processing of the capsid by proteases is required for infection. We find the transfer function of our engineered protease-activatable viruses (PAVs), relating the degree of proteolysis (input) to PAV activity (output), is highly nonlinear, likely due to increased polyvalency. By exploiting this dynamic polyvalency, in combination with the self-assembly properties of the virus capsid, we show that mosaic PAVs can be constructed that operate under a digital AND gate regime, where two different protease inputs are required for virus activation. These results show viruses can be engineered as signal-integrating nanoscale nodes whose functional properties are regulated by multiple proteolytic signals with easily tunable and predictable response surfaces, a promising development toward advanced control of gene delivery. |
format | Online Article Text |
id | pubmed-4046807 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-40468072015-05-05 Tunable Protease-Activatable Virus Nanonodes Judd, Justin Ho, Michelle L. Tiwari, Abhinav Gomez, Eric J. Dempsey, Christopher Van Vliet, Kim Igoshin, Oleg A. Silberg, Jonathan J. Agbandje-McKenna, Mavis Suh, Junghae ACS Nano [Image: see text] We explored the unique signal integration properties of the self-assembling 60-mer protein capsid of adeno-associated virus (AAV), a clinically proven human gene therapy vector, by engineering proteolytic regulation of virus–receptor interactions such that processing of the capsid by proteases is required for infection. We find the transfer function of our engineered protease-activatable viruses (PAVs), relating the degree of proteolysis (input) to PAV activity (output), is highly nonlinear, likely due to increased polyvalency. By exploiting this dynamic polyvalency, in combination with the self-assembly properties of the virus capsid, we show that mosaic PAVs can be constructed that operate under a digital AND gate regime, where two different protease inputs are required for virus activation. These results show viruses can be engineered as signal-integrating nanoscale nodes whose functional properties are regulated by multiple proteolytic signals with easily tunable and predictable response surfaces, a promising development toward advanced control of gene delivery. American Chemical Society 2014-05-05 2014-05-27 /pmc/articles/PMC4046807/ /pubmed/24796495 http://dx.doi.org/10.1021/nn500550q Text en Copyright © 2014 American Chemical Society |
spellingShingle | Judd, Justin Ho, Michelle L. Tiwari, Abhinav Gomez, Eric J. Dempsey, Christopher Van Vliet, Kim Igoshin, Oleg A. Silberg, Jonathan J. Agbandje-McKenna, Mavis Suh, Junghae Tunable Protease-Activatable Virus Nanonodes |
title | Tunable Protease-Activatable Virus Nanonodes |
title_full | Tunable Protease-Activatable Virus Nanonodes |
title_fullStr | Tunable Protease-Activatable Virus Nanonodes |
title_full_unstemmed | Tunable Protease-Activatable Virus Nanonodes |
title_short | Tunable Protease-Activatable Virus Nanonodes |
title_sort | tunable protease-activatable virus nanonodes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046807/ https://www.ncbi.nlm.nih.gov/pubmed/24796495 http://dx.doi.org/10.1021/nn500550q |
work_keys_str_mv | AT juddjustin tunableproteaseactivatablevirusnanonodes AT homichellel tunableproteaseactivatablevirusnanonodes AT tiwariabhinav tunableproteaseactivatablevirusnanonodes AT gomezericj tunableproteaseactivatablevirusnanonodes AT dempseychristopher tunableproteaseactivatablevirusnanonodes AT vanvlietkim tunableproteaseactivatablevirusnanonodes AT igoshinolega tunableproteaseactivatablevirusnanonodes AT silbergjonathanj tunableproteaseactivatablevirusnanonodes AT agbandjemckennamavis tunableproteaseactivatablevirusnanonodes AT suhjunghae tunableproteaseactivatablevirusnanonodes |