Cargando…
Multidimensional Compressed Sensing MRI Using Tensor Decomposition-Based Sparsifying Transform
Compressed Sensing (CS) has been applied in dynamic Magnetic Resonance Imaging (MRI) to accelerate the data acquisition without noticeably degrading the spatial-temporal resolution. A suitable sparsity basis is one of the key components to successful CS applications. Conventionally, a multidimension...
Autores principales: | Yu, Yeyang, Jin, Jin, Liu, Feng, Crozier, Stuart |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047014/ https://www.ncbi.nlm.nih.gov/pubmed/24901331 http://dx.doi.org/10.1371/journal.pone.0098441 |
Ejemplares similares
-
Two-Layer Tight Frame Sparsifying Model for Compressed Sensing Magnetic Resonance Imaging
por: Wang, Shanshan, et al.
Publicado: (2016) -
Discrete Shearlets as a Sparsifying Transform in Low-Rank Plus Sparse Decomposition for Undersampled (k, t)-Space MR Data
por: Protonotarios, Nicholas E., et al.
Publicado: (2022) -
SGCN: A Graph Sparsifier Based on Graph Convolutional Networks
por: Li, Jiayu, et al.
Publicado: (2020) -
On cheap entropy-sparsified regression learning
por: Horenko, Illia, et al.
Publicado: (2022) -
Image Denoising Using Sparsifying Transform Learning and Weighted Singular Values Minimization
por: Zhao, Yanwei, et al.
Publicado: (2020)