Cargando…

Amos-type bounds for modified Bessel function ratios()

We systematically investigate lower and upper bounds for the modified Bessel function ratio [Formula: see text] by functions of the form [Formula: see text] in case [Formula: see text] is positive for all [Formula: see text] , or equivalently, where [Formula: see text] or [Formula: see text] is a ne...

Descripción completa

Detalles Bibliográficos
Autores principales: Hornik, Kurt, Grün, Bettina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047631/
https://www.ncbi.nlm.nih.gov/pubmed/24926105
http://dx.doi.org/10.1016/j.jmaa.2013.05.070
_version_ 1782480427690229760
author Hornik, Kurt
Grün, Bettina
author_facet Hornik, Kurt
Grün, Bettina
author_sort Hornik, Kurt
collection PubMed
description We systematically investigate lower and upper bounds for the modified Bessel function ratio [Formula: see text] by functions of the form [Formula: see text] in case [Formula: see text] is positive for all [Formula: see text] , or equivalently, where [Formula: see text] or [Formula: see text] is a negative integer. For [Formula: see text] , we give an explicit description of the set of lower bounds and show that it has a greatest element. We also characterize the set of upper bounds and its minimal elements. If [Formula: see text] , the minimal elements are tangent to [Formula: see text] in exactly one point [Formula: see text] , and have [Formula: see text] as their lower envelope. We also provide a new family of explicitly computable upper bounds. Finally, if [Formula: see text] is a negative integer, we explicitly describe the sets of lower and upper bounds, and give their greatest and least elements, respectively.
format Online
Article
Text
id pubmed-4047631
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Academic Press
record_format MEDLINE/PubMed
spelling pubmed-40476312014-06-10 Amos-type bounds for modified Bessel function ratios() Hornik, Kurt Grün, Bettina J Math Anal Appl Article We systematically investigate lower and upper bounds for the modified Bessel function ratio [Formula: see text] by functions of the form [Formula: see text] in case [Formula: see text] is positive for all [Formula: see text] , or equivalently, where [Formula: see text] or [Formula: see text] is a negative integer. For [Formula: see text] , we give an explicit description of the set of lower bounds and show that it has a greatest element. We also characterize the set of upper bounds and its minimal elements. If [Formula: see text] , the minimal elements are tangent to [Formula: see text] in exactly one point [Formula: see text] , and have [Formula: see text] as their lower envelope. We also provide a new family of explicitly computable upper bounds. Finally, if [Formula: see text] is a negative integer, we explicitly describe the sets of lower and upper bounds, and give their greatest and least elements, respectively. Academic Press 2013-12-01 /pmc/articles/PMC4047631/ /pubmed/24926105 http://dx.doi.org/10.1016/j.jmaa.2013.05.070 Text en © 2013 The Authors https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license
spellingShingle Article
Hornik, Kurt
Grün, Bettina
Amos-type bounds for modified Bessel function ratios()
title Amos-type bounds for modified Bessel function ratios()
title_full Amos-type bounds for modified Bessel function ratios()
title_fullStr Amos-type bounds for modified Bessel function ratios()
title_full_unstemmed Amos-type bounds for modified Bessel function ratios()
title_short Amos-type bounds for modified Bessel function ratios()
title_sort amos-type bounds for modified bessel function ratios()
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047631/
https://www.ncbi.nlm.nih.gov/pubmed/24926105
http://dx.doi.org/10.1016/j.jmaa.2013.05.070
work_keys_str_mv AT hornikkurt amostypeboundsformodifiedbesselfunctionratios
AT grunbettina amostypeboundsformodifiedbesselfunctionratios