Cargando…

Properties of Newly-Synthesized Cationic Semi-Interpenetrating Hydrogels Containing Either Hyaluronan or Chondroitin Sulfate in a Methacrylic Matrix

Extracellular matrix components such as hyaluronan (HA) and chondroitin sulfate (CS) were combined with a synthetic matrix of p(HEMA-co-METAC) (poly(2-hydroxyethylmethacrylate-co-2-methacryloxyethyltrimethylammonium)) at 1% and 2% w/w concentration following a previously developed procedure. The res...

Descripción completa

Detalles Bibliográficos
Autores principales: Gatta, Annalisa La, Schiraldi, Chiara, D’Agostino, Antonella, Papa, Agata, Rosa, Mario De
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047938/
https://www.ncbi.nlm.nih.gov/pubmed/24955528
http://dx.doi.org/10.3390/jfb3020225
Descripción
Sumario:Extracellular matrix components such as hyaluronan (HA) and chondroitin sulfate (CS) were combined with a synthetic matrix of p(HEMA-co-METAC) (poly(2-hydroxyethylmethacrylate-co-2-methacryloxyethyltrimethylammonium)) at 1% and 2% w/w concentration following a previously developed procedure. The resulting semi-interpenetrating hydrogels were able to extensively swell in water incrementing their dry weight up to 13 fold depending on the glycosamminoglycan content and nature. When swollen in physiological solution, materials water uptake significantly decreased, and the differences in swelling capability became negligible. In physiological conditions, HA was released from the materials up to 38%w/w while CS was found almost fully retained. Materials were not cytotoxic and a biological evaluation, performed using 3T3 fibroblasts and an original time lapse videomicroscopy station, revealed their appropriateness for cell adhesion and proliferation. Slight differences observed in the morphology of adherent cells suggested a better performance of CS containing hydrogels.