Cargando…
PENDISC: A Simple Method for Constructing a Mathematical Model from Time-Series Data of Metabolite Concentrations
The availability of large-scale datasets has led to more effort being made to understand characteristics of metabolic reaction networks. However, because the large-scale data are semi-quantitative, and may contain biological variations and/or analytical errors, it remains a challenge to construct a...
Autores principales: | Sriyudthsak, Kansuporn, Iwata, Michio, Hirai, Masami Yokota, Shiraishi, Fumihide |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048473/ https://www.ncbi.nlm.nih.gov/pubmed/24801819 http://dx.doi.org/10.1007/s11538-014-9960-8 |
Ejemplares similares
-
Identification of a Metabolic Reaction Network from Time-Series Data of Metabolite Concentrations
por: Sriyudthsak, Kansuporn, et al.
Publicado: (2013) -
Mathematical Modeling and Dynamic Simulation of Metabolic Reaction Systems Using Metabolome Time Series Data
por: Sriyudthsak, Kansuporn, et al.
Publicado: (2016) -
PASMet: a web-based platform for prediction, modelling and analyses of metabolic systems
por: Sriyudthsak, Kansuporn, et al.
Publicado: (2016) -
A U-system approach for predicting metabolic behaviors and responses based on an alleged metabolic reaction network
por: Sriyudthsak, Kansuporn, et al.
Publicado: (2014) -
Nicotinamide mononucleotide and related metabolites induce disease resistance against fungal phytopathogens in Arabidopsis and barley
por: Miwa, Akihiro, et al.
Publicado: (2017)