Cargando…

Effect of seasonality on the estimated mean value of nutrients and ranking ability of a self-administered diet history questionnaire

BACKGROUND: We examined the effect of seasonality on the validity (ability to estimate the mean intake of a group and ranking ability) of nutrient intakes estimated with a comprehensive self-administered diet history questionnaire (DHQ) developed for the assessment of Japanese diets during the prece...

Descripción completa

Detalles Bibliográficos
Autores principales: Suga, Hitomi, Asakura, Keiko, Sasaki, Satoshi, Nojima, Masanori, Okubo, Hitomi, Hirota, Naoko, Notsu, Akiko, Fukui, Mitsuru, Date, Chigusa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048597/
https://www.ncbi.nlm.nih.gov/pubmed/24885190
http://dx.doi.org/10.1186/1475-2891-13-51
Descripción
Sumario:BACKGROUND: We examined the effect of seasonality on the validity (ability to estimate the mean intake of a group and ranking ability) of nutrient intakes estimated with a comprehensive self-administered diet history questionnaire (DHQ) developed for the assessment of Japanese diets during the preceding one month, using semi-weighed dietary records (DRs) as a reference method. METHODS: This study was conducted in three areas in Japan (Osaka, Nagano, and Tottori). The study population included 92 Japanese men aged 32–76 years and 92 Japanese women aged 31–69 years (30 from Osaka, 31 from Nagano, and 31 from Tottori for each sex). A DHQ and a four-day DR were completed four times at 3-month intervals, once per season. The effect of seasonality was examined by the level of agreement among seasons using mean nutrient intake and correlation coefficients. RESULTS: Significant differences in estimated energy-adjusted intakes of 42 selected nutrients between the average of DRs administered 16 times throughout a year and that of the DHQ administered four times in each season (fall, winter, spring, and summer) were observed for 30, 29, 30, and 31 nutrients for men and 21, 28, 30, and 31 nutrients for women, respectively. Pearson correlation coefficients between the DRs and the DHQs for energy-adjusted intakes of the 42 nutrients showed significant inter-season differences in 11 nutrients for men and 13 nutrients for women. Particularly, correlation coefficients of fat, monounsaturated fat, polyunsaturated fat, n-6 polyunsaturated fat, α-linolenic acid, and cholesterol in spring and cryptoxanthin in summer for men, and fat, saturated fat, and monounsaturated fat in spring and summer and thiamin and iron in summer for women were markedly altered by seasonality. CONCLUSIONS: Mean nutrient intake estimated by the DHQ varied by season, indicating that any consideration of nutrient intake estimated by the DHQ as a yearly average intake may be problematic. In contrast, the effect of seasonality on the ranking ability of the DHQ was relatively small, and thus the use of a DHQ to rank individuals by nutrient intake is acceptable for epidemiological studies, regardless of season.