Cargando…
Specialized Transduction Designed for Precise High-Throughput Unmarked Deletions in Mycobacterium tuberculosis
Specialized transduction has proven to be useful for generating deletion mutants in most mycobacteria, including virulent Mycobacterium tuberculosis. We have improved this system by developing (i) a single-step strategy for the construction of allelic exchange substrates (AES), (ii) a temperature-se...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Microbiology
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049104/ https://www.ncbi.nlm.nih.gov/pubmed/24895308 http://dx.doi.org/10.1128/mBio.01245-14 |
Sumario: | Specialized transduction has proven to be useful for generating deletion mutants in most mycobacteria, including virulent Mycobacterium tuberculosis. We have improved this system by developing (i) a single-step strategy for the construction of allelic exchange substrates (AES), (ii) a temperature-sensitive shuttle phasmid with a greater cloning capacity than phAE87, and (iii) bacteriophage-mediated transient expression of site-specific recombinase to precisely excise antibiotic markers. The methods ameliorate rate-limiting steps in strain construction in these difficult-to-manipulate bacteria. The new methods for strain construction were demonstrated to generalize to all classes of genes and chromosomal loci by generating more than 100 targeted single- or multiple-deletion substitutions. These improved methods pave the way for the generation of a complete ordered library of M. tuberculosis null strains, where each strain is deleted for a single defined open reading frame in M. tuberculosis. |
---|