Cargando…
Defects in pancreatic development and glucose metabolism in SMN-depleted mice independent of canonical spinal muscular atrophy neuromuscular pathology
Spinal muscular atrophy (SMA) is characterized by motor neuron loss, caused by mutations or deletions in the ubiquitously expressed survival motor neuron 1 (SMN1) gene. We recently identified a novel role for Smn protein in glucose metabolism and pancreatic development in both an intermediate SMA mo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049303/ https://www.ncbi.nlm.nih.gov/pubmed/24497575 http://dx.doi.org/10.1093/hmg/ddu052 |
_version_ | 1782319797935013888 |
---|---|
author | Bowerman, Melissa Michalski, John-Paul Beauvais, Ariane Murray, Lyndsay M. DeRepentigny, Yves Kothary, Rashmi |
author_facet | Bowerman, Melissa Michalski, John-Paul Beauvais, Ariane Murray, Lyndsay M. DeRepentigny, Yves Kothary, Rashmi |
author_sort | Bowerman, Melissa |
collection | PubMed |
description | Spinal muscular atrophy (SMA) is characterized by motor neuron loss, caused by mutations or deletions in the ubiquitously expressed survival motor neuron 1 (SMN1) gene. We recently identified a novel role for Smn protein in glucose metabolism and pancreatic development in both an intermediate SMA mouse model (Smn(2B/−)) and type I SMA patients. In the present study, we sought to determine if the observed metabolic and pancreatic defects are SMA-dependent. We employed a line of heterozygous Smn-depleted mice (Smn(+/−)) that lack the hallmark SMA neuromuscular pathology and overt phenotype. At 1 month of age, pancreatic/metabolic function of Smn(+/−)mice is indistinguishable from wild type. However, when metabolically challenged with a high-fat diet, Smn(+/−)mice display abnormal localization of glucagon-producing α-cells within the pancreatic islets and increased hepatic insulin and glucagon sensitivity, through increased p-AKT and p-CREB, respectively. Further, aging results in weight gain, an increased number of insulin-producing β cells, hyperinsulinemia and increased hepatic glucagon sensitivity in Smn(+/−)mice. Our study uncovers and highlights an important function of Smn protein in pancreatic islet development and glucose metabolism, independent of canonical SMA pathology. These findings suggest that carriers of SMN1 mutations and/or deletions may be at an increased risk of developing pancreatic and glucose metabolism defects, as even small depletions in Smn protein may be a risk factor for diet- and age-dependent development of metabolic disorders. |
format | Online Article Text |
id | pubmed-4049303 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-40493032014-06-18 Defects in pancreatic development and glucose metabolism in SMN-depleted mice independent of canonical spinal muscular atrophy neuromuscular pathology Bowerman, Melissa Michalski, John-Paul Beauvais, Ariane Murray, Lyndsay M. DeRepentigny, Yves Kothary, Rashmi Hum Mol Genet Articles Spinal muscular atrophy (SMA) is characterized by motor neuron loss, caused by mutations or deletions in the ubiquitously expressed survival motor neuron 1 (SMN1) gene. We recently identified a novel role for Smn protein in glucose metabolism and pancreatic development in both an intermediate SMA mouse model (Smn(2B/−)) and type I SMA patients. In the present study, we sought to determine if the observed metabolic and pancreatic defects are SMA-dependent. We employed a line of heterozygous Smn-depleted mice (Smn(+/−)) that lack the hallmark SMA neuromuscular pathology and overt phenotype. At 1 month of age, pancreatic/metabolic function of Smn(+/−)mice is indistinguishable from wild type. However, when metabolically challenged with a high-fat diet, Smn(+/−)mice display abnormal localization of glucagon-producing α-cells within the pancreatic islets and increased hepatic insulin and glucagon sensitivity, through increased p-AKT and p-CREB, respectively. Further, aging results in weight gain, an increased number of insulin-producing β cells, hyperinsulinemia and increased hepatic glucagon sensitivity in Smn(+/−)mice. Our study uncovers and highlights an important function of Smn protein in pancreatic islet development and glucose metabolism, independent of canonical SMA pathology. These findings suggest that carriers of SMN1 mutations and/or deletions may be at an increased risk of developing pancreatic and glucose metabolism defects, as even small depletions in Smn protein may be a risk factor for diet- and age-dependent development of metabolic disorders. Oxford University Press 2014-07-01 2014-02-04 /pmc/articles/PMC4049303/ /pubmed/24497575 http://dx.doi.org/10.1093/hmg/ddu052 Text en © The Author 2014. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Articles Bowerman, Melissa Michalski, John-Paul Beauvais, Ariane Murray, Lyndsay M. DeRepentigny, Yves Kothary, Rashmi Defects in pancreatic development and glucose metabolism in SMN-depleted mice independent of canonical spinal muscular atrophy neuromuscular pathology |
title | Defects in pancreatic development and glucose metabolism in SMN-depleted mice independent of canonical spinal muscular atrophy neuromuscular pathology |
title_full | Defects in pancreatic development and glucose metabolism in SMN-depleted mice independent of canonical spinal muscular atrophy neuromuscular pathology |
title_fullStr | Defects in pancreatic development and glucose metabolism in SMN-depleted mice independent of canonical spinal muscular atrophy neuromuscular pathology |
title_full_unstemmed | Defects in pancreatic development and glucose metabolism in SMN-depleted mice independent of canonical spinal muscular atrophy neuromuscular pathology |
title_short | Defects in pancreatic development and glucose metabolism in SMN-depleted mice independent of canonical spinal muscular atrophy neuromuscular pathology |
title_sort | defects in pancreatic development and glucose metabolism in smn-depleted mice independent of canonical spinal muscular atrophy neuromuscular pathology |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049303/ https://www.ncbi.nlm.nih.gov/pubmed/24497575 http://dx.doi.org/10.1093/hmg/ddu052 |
work_keys_str_mv | AT bowermanmelissa defectsinpancreaticdevelopmentandglucosemetabolisminsmndepletedmiceindependentofcanonicalspinalmuscularatrophyneuromuscularpathology AT michalskijohnpaul defectsinpancreaticdevelopmentandglucosemetabolisminsmndepletedmiceindependentofcanonicalspinalmuscularatrophyneuromuscularpathology AT beauvaisariane defectsinpancreaticdevelopmentandglucosemetabolisminsmndepletedmiceindependentofcanonicalspinalmuscularatrophyneuromuscularpathology AT murraylyndsaym defectsinpancreaticdevelopmentandglucosemetabolisminsmndepletedmiceindependentofcanonicalspinalmuscularatrophyneuromuscularpathology AT derepentignyyves defectsinpancreaticdevelopmentandglucosemetabolisminsmndepletedmiceindependentofcanonicalspinalmuscularatrophyneuromuscularpathology AT kotharyrashmi defectsinpancreaticdevelopmentandglucosemetabolisminsmndepletedmiceindependentofcanonicalspinalmuscularatrophyneuromuscularpathology |