Cargando…
Epigenetic Influences on Associations between Air Pollutants and Lung Function in Elderly Men: The Normative Aging Study
Background: Few studies have been performed on pulmonary effects of air pollution in the elderly—a vulnerable population with low reserve capacity—and mechanisms and susceptibility factors for potential effects are unclear. Objectives: We evaluated the lag structure of air pollutant associations wit...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
NLM-Export
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050500/ https://www.ncbi.nlm.nih.gov/pubmed/24602767 http://dx.doi.org/10.1289/ehp.1206458 |
_version_ | 1782319964574711808 |
---|---|
author | Lepeule, Johanna Bind, Marie-Abele Catherine Baccarelli, Andrea A. Koutrakis, Petros Tarantini, Letizia Litonjua, Augusto Sparrow, David Vokonas, Pantel Schwartz, Joel D. |
author_facet | Lepeule, Johanna Bind, Marie-Abele Catherine Baccarelli, Andrea A. Koutrakis, Petros Tarantini, Letizia Litonjua, Augusto Sparrow, David Vokonas, Pantel Schwartz, Joel D. |
author_sort | Lepeule, Johanna |
collection | PubMed |
description | Background: Few studies have been performed on pulmonary effects of air pollution in the elderly—a vulnerable population with low reserve capacity—and mechanisms and susceptibility factors for potential effects are unclear. Objectives: We evaluated the lag structure of air pollutant associations with lung function and potential effect modification by DNA methylation (< or ≥ median) at 26 individual CpG sites in nine candidate genes in a well-characterized cohort of elderly men. Methods: We measured forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV(1)), and blood DNA methylation one to four times between 1999 and 2009 in 776 men from the Normative Aging Study. Air pollution was measured at fixed monitors 4 hr to 28 days before lung function tests. We used linear mixed-effects models to estimate the main effects of air pollutants and effect modification by DNA methylation. Results: An interquartile range (IQR) increase in subchronic exposure (3 to 28 days cumulated), but not in acute exposure (during the previous 4 hr, or the current or previous day), to black carbon, total and nontraffic particles with aerodynamic diameter ≤ 2.5 μm (PM(2.5)), carbon monoxide, and nitrogen dioxide was associated with a 1–5% decrease in FVC and FEV(1) (p < 0.05). Slope estimates were greater for FVC than FEV(1), and increased with cumulative exposure. The estimates slopes for air pollutants (28 days cumulated) were higher in participants with low (< median) methylation in TLR2 at position 2 and position 5 and high (≥ median) methylation in GCR. Conclusions: Subchronic exposure to traffic-related pollutants was associated with significantly reduced lung function in the elderly; nontraffic pollutants (particles, ozone) had weaker associations. Epigenetic mechanisms related to inflammation and immunity may influence these associations. Citation: Lepeule J, Bind MAC, Baccarelli AA, Koutrakis P, Tarantini L, Litonjua A, Sparrow D, Vokonas P, Schwartz JD. 2014. Epigenetic influences on associations between air pollutants and lung function in elderly men: the Normative Aging Study. Environ Health Perspect 122:566–572; http://dx.doi.org/10.1289/ehp.1206458 |
format | Online Article Text |
id | pubmed-4050500 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | NLM-Export |
record_format | MEDLINE/PubMed |
spelling | pubmed-40505002014-06-12 Epigenetic Influences on Associations between Air Pollutants and Lung Function in Elderly Men: The Normative Aging Study Lepeule, Johanna Bind, Marie-Abele Catherine Baccarelli, Andrea A. Koutrakis, Petros Tarantini, Letizia Litonjua, Augusto Sparrow, David Vokonas, Pantel Schwartz, Joel D. Environ Health Perspect Research Background: Few studies have been performed on pulmonary effects of air pollution in the elderly—a vulnerable population with low reserve capacity—and mechanisms and susceptibility factors for potential effects are unclear. Objectives: We evaluated the lag structure of air pollutant associations with lung function and potential effect modification by DNA methylation (< or ≥ median) at 26 individual CpG sites in nine candidate genes in a well-characterized cohort of elderly men. Methods: We measured forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV(1)), and blood DNA methylation one to four times between 1999 and 2009 in 776 men from the Normative Aging Study. Air pollution was measured at fixed monitors 4 hr to 28 days before lung function tests. We used linear mixed-effects models to estimate the main effects of air pollutants and effect modification by DNA methylation. Results: An interquartile range (IQR) increase in subchronic exposure (3 to 28 days cumulated), but not in acute exposure (during the previous 4 hr, or the current or previous day), to black carbon, total and nontraffic particles with aerodynamic diameter ≤ 2.5 μm (PM(2.5)), carbon monoxide, and nitrogen dioxide was associated with a 1–5% decrease in FVC and FEV(1) (p < 0.05). Slope estimates were greater for FVC than FEV(1), and increased with cumulative exposure. The estimates slopes for air pollutants (28 days cumulated) were higher in participants with low (< median) methylation in TLR2 at position 2 and position 5 and high (≥ median) methylation in GCR. Conclusions: Subchronic exposure to traffic-related pollutants was associated with significantly reduced lung function in the elderly; nontraffic pollutants (particles, ozone) had weaker associations. Epigenetic mechanisms related to inflammation and immunity may influence these associations. Citation: Lepeule J, Bind MAC, Baccarelli AA, Koutrakis P, Tarantini L, Litonjua A, Sparrow D, Vokonas P, Schwartz JD. 2014. Epigenetic influences on associations between air pollutants and lung function in elderly men: the Normative Aging Study. Environ Health Perspect 122:566–572; http://dx.doi.org/10.1289/ehp.1206458 NLM-Export 2014-03-06 2014-06 /pmc/articles/PMC4050500/ /pubmed/24602767 http://dx.doi.org/10.1289/ehp.1206458 Text en http://creativecommons.org/publicdomain/mark/1.0/ Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, “Reproduced with permission from Environmental Health Perspectives”); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright. |
spellingShingle | Research Lepeule, Johanna Bind, Marie-Abele Catherine Baccarelli, Andrea A. Koutrakis, Petros Tarantini, Letizia Litonjua, Augusto Sparrow, David Vokonas, Pantel Schwartz, Joel D. Epigenetic Influences on Associations between Air Pollutants and Lung Function in Elderly Men: The Normative Aging Study |
title | Epigenetic Influences on Associations between Air Pollutants and Lung Function in Elderly Men: The Normative Aging Study |
title_full | Epigenetic Influences on Associations between Air Pollutants and Lung Function in Elderly Men: The Normative Aging Study |
title_fullStr | Epigenetic Influences on Associations between Air Pollutants and Lung Function in Elderly Men: The Normative Aging Study |
title_full_unstemmed | Epigenetic Influences on Associations between Air Pollutants and Lung Function in Elderly Men: The Normative Aging Study |
title_short | Epigenetic Influences on Associations between Air Pollutants and Lung Function in Elderly Men: The Normative Aging Study |
title_sort | epigenetic influences on associations between air pollutants and lung function in elderly men: the normative aging study |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050500/ https://www.ncbi.nlm.nih.gov/pubmed/24602767 http://dx.doi.org/10.1289/ehp.1206458 |
work_keys_str_mv | AT lepeulejohanna epigeneticinfluencesonassociationsbetweenairpollutantsandlungfunctioninelderlymenthenormativeagingstudy AT bindmarieabelecatherine epigeneticinfluencesonassociationsbetweenairpollutantsandlungfunctioninelderlymenthenormativeagingstudy AT baccarelliandreaa epigeneticinfluencesonassociationsbetweenairpollutantsandlungfunctioninelderlymenthenormativeagingstudy AT koutrakispetros epigeneticinfluencesonassociationsbetweenairpollutantsandlungfunctioninelderlymenthenormativeagingstudy AT tarantiniletizia epigeneticinfluencesonassociationsbetweenairpollutantsandlungfunctioninelderlymenthenormativeagingstudy AT litonjuaaugusto epigeneticinfluencesonassociationsbetweenairpollutantsandlungfunctioninelderlymenthenormativeagingstudy AT sparrowdavid epigeneticinfluencesonassociationsbetweenairpollutantsandlungfunctioninelderlymenthenormativeagingstudy AT vokonaspantel epigeneticinfluencesonassociationsbetweenairpollutantsandlungfunctioninelderlymenthenormativeagingstudy AT schwartzjoeld epigeneticinfluencesonassociationsbetweenairpollutantsandlungfunctioninelderlymenthenormativeagingstudy |