Cargando…

Rab18 and a Rab18 GEF complex are required for normal ER structure

The ancestral Rab GTPase Rab18 and both subunits of the Rab3GAP complex are mutated in the human neurological and developmental disorder Warburg Micro syndrome. Here, we demonstrate that the Rab3GAP complex is a specific Rab18 guanine nucleotide exchange factor (GEF). The Rab3GAP complex localizes t...

Descripción completa

Detalles Bibliográficos
Autores principales: Gerondopoulos, Andreas, Bastos, Ricardo Nunes, Yoshimura, Shin-ichiro, Anderson, Rachel, Carpanini, Sarah, Aligianis, Irene, Handley, Mark T., Barr, Francis A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050724/
https://www.ncbi.nlm.nih.gov/pubmed/24891604
http://dx.doi.org/10.1083/jcb.201403026
Descripción
Sumario:The ancestral Rab GTPase Rab18 and both subunits of the Rab3GAP complex are mutated in the human neurological and developmental disorder Warburg Micro syndrome. Here, we demonstrate that the Rab3GAP complex is a specific Rab18 guanine nucleotide exchange factor (GEF). The Rab3GAP complex localizes to the endoplasmic reticulum (ER) and is necessary for ER targeting of Rab18. It is also sufficient to promote membrane recruitment of Rab18. Disease-associated point mutations of conserved residues in either the Rab3GAP1 (T18P and E24V) or Rab3GAP2 (R426C) subunits result in loss of the Rab18 GEF and membrane-targeting activities. Supporting the view that Rab18 activity is important for ER structure, in the absence of either Rab3GAP subunit or Rab18 function, ER tubular networks marked by reticulon 4 were disrupted, and ER sheets defined by CLIMP-63 spread out into the cell periphery. Micro syndrome is therefore a disease characterized by direct loss of Rab18 function or loss of Rab18 activation at the ER by its GEF Rab3GAP.