Cargando…
Application of a Bayesian Spatiotemporal Surveillance Method to NYC Syndromic Data
Autores principales: | Levin-Rector, Alison, Corberán-Vallet, Ana, Lawson, Andrew B., Lall, Ramona, Mathes, Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
University of Illinois at Chicago Library
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050869/ http://dx.doi.org/10.5210/ojphi.v6i1.5040 |
Ejemplares similares
-
Detecting Unanticipated Increases in Emergency Department Chief Complaint Keywords
por: Lall, Ramona, et al.
Publicado: (2014) -
Using Syndromic Surveillance to Investigate Tattoo-related Skin Infections in NYC
por: Kotzen, Mollie, et al.
Publicado: (2014) -
Building a Better Syndromic Surveillance System: the New York City
Experience
por: Mathes, Robert, et al.
Publicado: (2015) -
Evaluation of Temporal Aberration Detection Methods in New York City Syndromic Data
por: Mathes, Robert, et al.
Publicado: (2014) -
From Noise to Characterization Tool: Assessing Biases in Influenza
Surveillance Methods Using a Bayesian Hierarchical Model
por: Zhang, Ying, et al.
Publicado: (2014)