Cargando…

Differential expression of C-Reactive protein and Serum amyloid A in different cell types in the lung tissue of chronic obstructive pulmonary disease patients

BACKGROUND: Chronic systemic inflammatory syndrome has been implicated in the pathobiology of extrapulmonary manifestations of chronic obstructive pulmonary disease (COPD). We aimed to investigate which cell types within lung tissue are responsible for expressing major acute-phase reactants in COPD...

Descripción completa

Detalles Bibliográficos
Autores principales: Calero, Carmen, Arellano, Elena, Lopez-Villalobos, Jose Luis, Sánchez-López, Verónica, Moreno-Mata, Nicolás, López-Campos, José Luis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051146/
https://www.ncbi.nlm.nih.gov/pubmed/24884805
http://dx.doi.org/10.1186/1471-2466-14-95
Descripción
Sumario:BACKGROUND: Chronic systemic inflammatory syndrome has been implicated in the pathobiology of extrapulmonary manifestations of chronic obstructive pulmonary disease (COPD). We aimed to investigate which cell types within lung tissue are responsible for expressing major acute-phase reactants in COPD patients and disease-free (“resistant”) smokers. METHODS: An observational case–control study was performed to investigate three different cell types in surgical lung samples of COPD patients and resistant smokers via expression of the C-reactive protein (CRP) and serum amyloid A (SAA1, SAA2 and SAA4) genes. Epithelial cells, macrophages and fibroblasts from the lung parenchyma were separated by magnetic microbeads (CD326, CD14 and anti-fibroblast), and gene expression was evaluated by RT-PCR. RESULTS: The sample consisted of 74 subjects, including 40 COPD patients and 34 smokers without disease. All three cell types were capable of synthesizing these biomarkers to some extent. In fibroblasts, gene expression analysis of the studied biomarkers demonstrated increased SAA2 and decreased SAA1 in patients with COPD. In epithelial cells, there was a marked increase in CRP, which was not observed in fibroblasts or macrophages. In macrophages, however, gene expression of these markers was decreased in COPD patients compared to controls. CONCLUSIONS: These results provide novel information regarding the gene expression of CRP and SAA in different cell types in the lung parenchyma. This study revealed differences in the expression of these markers according to cell type and disease status and contributes to the identification of cell types that are responsible for the secretion of these molecules.