Cargando…
Re-encoding of associations by recurrent plasticity increases memory capacity
Recurrent networks have been proposed as a model of associative memory. In such models, memory items are stored in the strength of connections between neurons. These modifiable connections or synapses constitute a shared resource among all stored memories, limiting the capacity of the network. Synap...
Autores principales: | Medina, Daniel, Leibold, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051198/ https://www.ncbi.nlm.nih.gov/pubmed/24959137 http://dx.doi.org/10.3389/fnsyn.2014.00013 |
Ejemplares similares
-
Inhomogeneous Sparseness Leads to Dynamic Instability During Sequence Memory Recall in a Recurrent Neural Network Model
por: Medina, Daniel, et al.
Publicado: (2013) -
Recurrent Coupling Improves Discrimination of Temporal Spike Patterns
por: Yuan, Chun-Wei, et al.
Publicado: (2012) -
Capacity measurement of a recurrent inhibitory neural network
por: Yuan, Chun-Wei, et al.
Publicado: (2011) -
Common capacity-limited neural mechanisms of selective attention and spatial working memory encoding
por: Fusser, Fabian, et al.
Publicado: (2011) -
Cerebellar re-encoding of self-generated head movements
por: Dugué, Guillaume P, et al.
Publicado: (2017)