Cargando…

Changes in fetal mannose and other carbohydrates induced by a maternal insulin infusion in pregnant sheep

BACKGROUND: The importance of non-glucose carbohydrates, especially mannose and inositol, for normal development is increasingly recognized. Whether pregnancies complicated by abnormal glucose transfer to the fetus also affect the regulation of non-glucose carbohydrates is unknown. In pregnant sheep...

Descripción completa

Detalles Bibliográficos
Autores principales: Brown, Laura D, Thorn, Stephanie R, Cheung, Alex, Lavezzi, Jinny R, Battaglia, Frederick C, Rozance, Paul J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051387/
https://www.ncbi.nlm.nih.gov/pubmed/24917928
http://dx.doi.org/10.1186/2049-1891-5-28
Descripción
Sumario:BACKGROUND: The importance of non-glucose carbohydrates, especially mannose and inositol, for normal development is increasingly recognized. Whether pregnancies complicated by abnormal glucose transfer to the fetus also affect the regulation of non-glucose carbohydrates is unknown. In pregnant sheep, maternal insulin infusions were used to reduce glucose supply to the fetus for both short (2-wk) and long (8-wk) durations to test the hypothesis that a maternal insulin infusion would suppress fetal mannose and inositol concentrations. We also used direct fetal insulin infusions (1-wk hyperinsulinemic-isoglycemic clamp) to determine the relative importance of fetal glucose and insulin for regulating non-glucose carbohydrates. RESULTS: A maternal insulin infusion resulted in lower maternal (50%, P < 0.01) and fetal (35-45%, P < 0.01) mannose concentrations, which were highly correlated (r(2) = 0.69, P < 0.01). A fetal insulin infusion resulted in a 50% reduction of fetal mannose (P < 0.05). Neither maternal nor fetal plasma inositol changed with exogenous insulin infusions. Additionally, maternal insulin infusion resulted in lower fetal sorbitol and fructose (P < 0.01). CONCLUSIONS: Chronically decreased glucose supply to the fetus as well as fetal hyperinsulinemia both reduce fetal non-glucose carbohydrates. Given the role of these carbohydrates in protein glycosylation and lipid production, more research on their metabolism in pregnancies complicated by abnormal glucose metabolism is clearly warranted.