Cargando…
The hnRNP-Q Protein LIF2 Participates in the Plant Immune Response
Eukaryotes have evolved complex defense pathways to combat invading pathogens. Here, we investigated the role of the Arabidopsis thaliana heterogeneous nuclear ribonucleoprotein (hnRNP-Q) LIF2 in the plant innate immune response. We show that LIF2 loss-of-function in A. thaliana leads to changes in...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051675/ https://www.ncbi.nlm.nih.gov/pubmed/24914891 http://dx.doi.org/10.1371/journal.pone.0099343 |
_version_ | 1782320125565730816 |
---|---|
author | Le Roux, Clémentine Del Prete, Stefania Boutet-Mercey, Stéphanie Perreau, François Balagué, Claudine Roby, Dominique Fagard, Mathilde Gaudin, Valérie |
author_facet | Le Roux, Clémentine Del Prete, Stefania Boutet-Mercey, Stéphanie Perreau, François Balagué, Claudine Roby, Dominique Fagard, Mathilde Gaudin, Valérie |
author_sort | Le Roux, Clémentine |
collection | PubMed |
description | Eukaryotes have evolved complex defense pathways to combat invading pathogens. Here, we investigated the role of the Arabidopsis thaliana heterogeneous nuclear ribonucleoprotein (hnRNP-Q) LIF2 in the plant innate immune response. We show that LIF2 loss-of-function in A. thaliana leads to changes in the basal expression of the salicylic acid (SA)- and jasmonic acid (JA)- dependent defense marker genes PR1 and PDF1.2, respectively. Whereas the expression of genes involved in SA and JA biosynthesis and signaling was also affected in the lif2-1 mutant, no change in SA and JA hormonal contents was detected. In addition, the composition of glucosinolates, a class of defense-related secondary metabolites, was altered in the lif2-1 mutant in the absence of pathogen challenge. The lif2-1 mutant exhibited reduced susceptibility to the hemi-biotrophic pathogen Pseudomonas syringae and the necrotrophic ascomycete Botrytis cinerea. Furthermore, the lif2-1 sid2-2 double mutant was less susceptible than the wild type to P. syringae infection, suggesting that the lif2 response to pathogens was independent of SA accumulation. Together, our data suggest that lif2-1 exhibits a basal primed defense state, resulting from complex deregulation of gene expression, which leads to increased resistance to pathogens with various infection strategies. Therefore, LIF2 may function as a suppressor of cell-autonomous immunity. Similar to its human homolog, NSAP1/SYNCRIP, a trans-acting factor involved in both cellular processes and the viral life cycle, LIF2 may regulate the conflicting aspects of development and defense programs, suggesting that a conserved evolutionary trade-off between growth and defense pathways exists in eukaryotes. |
format | Online Article Text |
id | pubmed-4051675 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-40516752014-06-18 The hnRNP-Q Protein LIF2 Participates in the Plant Immune Response Le Roux, Clémentine Del Prete, Stefania Boutet-Mercey, Stéphanie Perreau, François Balagué, Claudine Roby, Dominique Fagard, Mathilde Gaudin, Valérie PLoS One Research Article Eukaryotes have evolved complex defense pathways to combat invading pathogens. Here, we investigated the role of the Arabidopsis thaliana heterogeneous nuclear ribonucleoprotein (hnRNP-Q) LIF2 in the plant innate immune response. We show that LIF2 loss-of-function in A. thaliana leads to changes in the basal expression of the salicylic acid (SA)- and jasmonic acid (JA)- dependent defense marker genes PR1 and PDF1.2, respectively. Whereas the expression of genes involved in SA and JA biosynthesis and signaling was also affected in the lif2-1 mutant, no change in SA and JA hormonal contents was detected. In addition, the composition of glucosinolates, a class of defense-related secondary metabolites, was altered in the lif2-1 mutant in the absence of pathogen challenge. The lif2-1 mutant exhibited reduced susceptibility to the hemi-biotrophic pathogen Pseudomonas syringae and the necrotrophic ascomycete Botrytis cinerea. Furthermore, the lif2-1 sid2-2 double mutant was less susceptible than the wild type to P. syringae infection, suggesting that the lif2 response to pathogens was independent of SA accumulation. Together, our data suggest that lif2-1 exhibits a basal primed defense state, resulting from complex deregulation of gene expression, which leads to increased resistance to pathogens with various infection strategies. Therefore, LIF2 may function as a suppressor of cell-autonomous immunity. Similar to its human homolog, NSAP1/SYNCRIP, a trans-acting factor involved in both cellular processes and the viral life cycle, LIF2 may regulate the conflicting aspects of development and defense programs, suggesting that a conserved evolutionary trade-off between growth and defense pathways exists in eukaryotes. Public Library of Science 2014-06-10 /pmc/articles/PMC4051675/ /pubmed/24914891 http://dx.doi.org/10.1371/journal.pone.0099343 Text en © 2014 Le Roux et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Le Roux, Clémentine Del Prete, Stefania Boutet-Mercey, Stéphanie Perreau, François Balagué, Claudine Roby, Dominique Fagard, Mathilde Gaudin, Valérie The hnRNP-Q Protein LIF2 Participates in the Plant Immune Response |
title | The hnRNP-Q Protein LIF2 Participates in the Plant Immune Response |
title_full | The hnRNP-Q Protein LIF2 Participates in the Plant Immune Response |
title_fullStr | The hnRNP-Q Protein LIF2 Participates in the Plant Immune Response |
title_full_unstemmed | The hnRNP-Q Protein LIF2 Participates in the Plant Immune Response |
title_short | The hnRNP-Q Protein LIF2 Participates in the Plant Immune Response |
title_sort | hnrnp-q protein lif2 participates in the plant immune response |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051675/ https://www.ncbi.nlm.nih.gov/pubmed/24914891 http://dx.doi.org/10.1371/journal.pone.0099343 |
work_keys_str_mv | AT lerouxclementine thehnrnpqproteinlif2participatesintheplantimmuneresponse AT delpretestefania thehnrnpqproteinlif2participatesintheplantimmuneresponse AT boutetmerceystephanie thehnrnpqproteinlif2participatesintheplantimmuneresponse AT perreaufrancois thehnrnpqproteinlif2participatesintheplantimmuneresponse AT balagueclaudine thehnrnpqproteinlif2participatesintheplantimmuneresponse AT robydominique thehnrnpqproteinlif2participatesintheplantimmuneresponse AT fagardmathilde thehnrnpqproteinlif2participatesintheplantimmuneresponse AT gaudinvalerie thehnrnpqproteinlif2participatesintheplantimmuneresponse AT lerouxclementine hnrnpqproteinlif2participatesintheplantimmuneresponse AT delpretestefania hnrnpqproteinlif2participatesintheplantimmuneresponse AT boutetmerceystephanie hnrnpqproteinlif2participatesintheplantimmuneresponse AT perreaufrancois hnrnpqproteinlif2participatesintheplantimmuneresponse AT balagueclaudine hnrnpqproteinlif2participatesintheplantimmuneresponse AT robydominique hnrnpqproteinlif2participatesintheplantimmuneresponse AT fagardmathilde hnrnpqproteinlif2participatesintheplantimmuneresponse AT gaudinvalerie hnrnpqproteinlif2participatesintheplantimmuneresponse |