Cargando…
Gene-Splitting Technology: A Novel Approach for the Containment of Transgene Flow in Nicotiana tabacum
The potential impact of transgene escape on the environment and food safety is a major concern to the scientists and public. This work aimed to assess the effect of intein-mediated gene splitting on containment of transgene flow. Two fusion genes, EPSPSn-In and Ic-EPSPSc, were constructed and integr...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051838/ https://www.ncbi.nlm.nih.gov/pubmed/24915192 http://dx.doi.org/10.1371/journal.pone.0099651 |
Sumario: | The potential impact of transgene escape on the environment and food safety is a major concern to the scientists and public. This work aimed to assess the effect of intein-mediated gene splitting on containment of transgene flow. Two fusion genes, EPSPSn-In and Ic-EPSPSc, were constructed and integrated into N. tabacum, using Agrobacterium tumefaciens-mediated transformation. EPSPSn-In encodes the first 295 aa of the herbicide resistance gene 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) fused with the first 123 aa of the Ssp DnaE intein (In), whereas Ic-EPSPSc encodes the 36 C-terminal aa of the Ssp DnaE intein (Ic) fused to the rest of EPSPS C terminus peptide sequences. Both EPSPSn-In and Ic-EPSPSc constructs were introduced into the same N. tabacum genome by genetic crossing. Hybrids displayed resistance to the herbicide N-(phosphonomethyl)-glycine (glyphosate). Western blot analysis of protein extracts from hybrid plants identified full-length EPSPS. Furthermore, all hybrid seeds germinated and grew normally on glyphosate selective medium. The 6-8 leaf hybrid plants showed tolerance of 2000 ppm glyphosate in field spraying. These results indicated that functional EPSPS protein was reassembled in vivo by intein-mediated trans-splicing in 100% of plants. In order to evaluate the effect of the gene splitting technique for containment of transgene flow, backcrossing experiments were carried out between hybrids, in which the foreign genes EPSPSn-In and Ic-EPSPSc were inserted into different chromosomes, and non-transgenic plants NC89. Among the 2812 backcrossing progeny, about 25% (664 plantlets) displayed glyphosate resistance. These data indicated that transgene flow could be reduced by 75%. Overall, our findings provide a new and highly effective approach for biological containment of transgene flow. |
---|