Cargando…
Infinitely Many Homoclinic Solutions for Second Order Nonlinear Difference Equations with p-Laplacian
We employ Nehari manifold methods and critical point theory to study the existence of nontrivial homoclinic solutions of discrete p-Laplacian equations with a coercive weight function and superlinear nonlinearity. Without assuming the classical Ambrosetti-Rabinowitz condition and without any periodi...
Autores principales: | Sun, Guowei, Mai, Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052069/ https://www.ncbi.nlm.nih.gov/pubmed/24959604 http://dx.doi.org/10.1155/2014/276372 |
Ejemplares similares
-
Infinitely Many Weak Solutions of the p-Laplacian Equation with Nonlinear Boundary Conditions
por: Lu, Feng-Yun, et al.
Publicado: (2014) -
The uniqueness of a nonlinear diffusion equation related to the p-Laplacian
por: Zhan, Huashui
Publicado: (2018) -
Hyperbolic periodic solutions, heteroclinic connections and transversal homoclinic points in autonomous differential delay equations
por: Walther, Hans-Otto
Publicado: (1989) -
Nonlinear elliptic equations of the second order
por: Han, Qing
Publicado: (2016) -
Existence of periodic solution for fourth-order generalized neutral p-Laplacian differential equation with attractive and repulsive singularities
por: Xin, Yun, et al.
Publicado: (2018)