Cargando…
Negative and Positive Association Rules Mining from Text Using Frequent and Infrequent Itemsets
Association rule mining research typically focuses on positive association rules (PARs), generated from frequently occurring itemsets. However, in recent years, there has been a significant research focused on finding interesting infrequent itemsets leading to the discovery of negative association r...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052479/ https://www.ncbi.nlm.nih.gov/pubmed/24955429 http://dx.doi.org/10.1155/2014/973750 |
Sumario: | Association rule mining research typically focuses on positive association rules (PARs), generated from frequently occurring itemsets. However, in recent years, there has been a significant research focused on finding interesting infrequent itemsets leading to the discovery of negative association rules (NARs). The discovery of infrequent itemsets is far more difficult than their counterparts, that is, frequent itemsets. These problems include infrequent itemsets discovery and generation of accurate NARs, and their huge number as compared with positive association rules. In medical science, for example, one is interested in factors which can either adjudicate the presence of a disease or write-off of its possibility. The vivid positive symptoms are often obvious; however, negative symptoms are subtler and more difficult to recognize and diagnose. In this paper, we propose an algorithm for discovering positive and negative association rules among frequent and infrequent itemsets. We identify associations among medications, symptoms, and laboratory results using state-of-the-art data mining technology. |
---|