Cargando…

The Exponential Diophantine Equation 2(x) + b (y) = c (z)

Let b and c be fixed coprime odd positive integers with min{b, c} > 1. In this paper, a classification of all positive integer solutions (x, y, z) of the equation 2(x) + b (y) = c (z) is given. Further, by an elementary approach, we prove that if c = b + 2, then the equation has only the positive...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Yahui, Li, Xiaoxue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052515/
https://www.ncbi.nlm.nih.gov/pubmed/24959613
http://dx.doi.org/10.1155/2014/401816
Descripción
Sumario:Let b and c be fixed coprime odd positive integers with min{b, c} > 1. In this paper, a classification of all positive integer solutions (x, y, z) of the equation 2(x) + b (y) = c (z) is given. Further, by an elementary approach, we prove that if c = b + 2, then the equation has only the positive integer solution (x, y, z) = (1,1, 1), except for (b, x, y, z) = (89,13,1, 2) and (2(r) − 1, r + 2,2, 2), where r is a positive integer with r ≥ 2.