Cargando…
The Exponential Diophantine Equation 2(x) + b (y) = c (z)
Let b and c be fixed coprime odd positive integers with min{b, c} > 1. In this paper, a classification of all positive integer solutions (x, y, z) of the equation 2(x) + b (y) = c (z) is given. Further, by an elementary approach, we prove that if c = b + 2, then the equation has only the positive...
Autores principales: | Yu, Yahui, Li, Xiaoxue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052515/ https://www.ncbi.nlm.nih.gov/pubmed/24959613 http://dx.doi.org/10.1155/2014/401816 |
Ejemplares similares
-
The Diophantine Equation 8(x) + p
(y) = z
(2)
por: Qi, Lan, et al.
Publicado: (2015) -
Diophantine approximations and Diophantine equations
por: Schmidt, Wolfgang M
Publicado: (1991) -
On the exponential Diophantine equation related to powers of two consecutive terms of Lucas sequences
por: Ddamulira, Mahadi, et al.
Publicado: (2020) -
On the System of Diophantine Equations x
(2) − 6y
(2) = −5 and x = az
(2) − b
por: Zhang, Silan, et al.
Publicado: (2014) -
Diophantine equations
por: Mordell, L J
Publicado: (1969)