Cargando…

Behavior of a Competitive System of Second-Order Difference Equations

We study the boundedness and persistence, existence, and uniqueness of positive equilibrium, local and global behavior of positive equilibrium point, and rate of convergence of positive solutions of the following system of rational difference equations: x ( n+1) = (α (1) + β (1) x ( n−1))/(a (1) + b...

Descripción completa

Detalles Bibliográficos
Autores principales: Din, Q., Ibrahim, T. F., Khan, K. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052555/
https://www.ncbi.nlm.nih.gov/pubmed/24959605
http://dx.doi.org/10.1155/2014/283982
_version_ 1782320253758341120
author Din, Q.
Ibrahim, T. F.
Khan, K. A.
author_facet Din, Q.
Ibrahim, T. F.
Khan, K. A.
author_sort Din, Q.
collection PubMed
description We study the boundedness and persistence, existence, and uniqueness of positive equilibrium, local and global behavior of positive equilibrium point, and rate of convergence of positive solutions of the following system of rational difference equations: x ( n+1) = (α (1) + β (1) x ( n−1))/(a (1) + b (1) y ( n )), y ( n+1) = (α (2) + β (2) y ( n−1))/(a (2) + b (2) x ( n )), where the parameters α ( i ), β ( i ), a ( i ), and b ( i ) for i ∈ {1,2} and initial conditions x (0), x (−1), y (0), and y (−1) are positive real numbers. Some numerical examples are given to verify our theoretical results.
format Online
Article
Text
id pubmed-4052555
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-40525552014-06-23 Behavior of a Competitive System of Second-Order Difference Equations Din, Q. Ibrahim, T. F. Khan, K. A. ScientificWorldJournal Research Article We study the boundedness and persistence, existence, and uniqueness of positive equilibrium, local and global behavior of positive equilibrium point, and rate of convergence of positive solutions of the following system of rational difference equations: x ( n+1) = (α (1) + β (1) x ( n−1))/(a (1) + b (1) y ( n )), y ( n+1) = (α (2) + β (2) y ( n−1))/(a (2) + b (2) x ( n )), where the parameters α ( i ), β ( i ), a ( i ), and b ( i ) for i ∈ {1,2} and initial conditions x (0), x (−1), y (0), and y (−1) are positive real numbers. Some numerical examples are given to verify our theoretical results. Hindawi Publishing Corporation 2014-05-15 /pmc/articles/PMC4052555/ /pubmed/24959605 http://dx.doi.org/10.1155/2014/283982 Text en Copyright © 2014 Q. Din et al. https://creativecommons.org/licenses/by/3.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Din, Q.
Ibrahim, T. F.
Khan, K. A.
Behavior of a Competitive System of Second-Order Difference Equations
title Behavior of a Competitive System of Second-Order Difference Equations
title_full Behavior of a Competitive System of Second-Order Difference Equations
title_fullStr Behavior of a Competitive System of Second-Order Difference Equations
title_full_unstemmed Behavior of a Competitive System of Second-Order Difference Equations
title_short Behavior of a Competitive System of Second-Order Difference Equations
title_sort behavior of a competitive system of second-order difference equations
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052555/
https://www.ncbi.nlm.nih.gov/pubmed/24959605
http://dx.doi.org/10.1155/2014/283982
work_keys_str_mv AT dinq behaviorofacompetitivesystemofsecondorderdifferenceequations
AT ibrahimtf behaviorofacompetitivesystemofsecondorderdifferenceequations
AT khanka behaviorofacompetitivesystemofsecondorderdifferenceequations