Cargando…

Enzymatic synthesis of epothilone A glycosides

Epothilones are extremely cytotoxic chemotherapeutic agents with epoxide, thiazole, and ketone groups that share equipotent kinetic similarity with taxol. The in vitro glycosylation catalyzed by uridine diphosphate glucosyltransferase (YjiC) from Bacillus licheniformis generated six novel epothilone...

Descripción completa

Detalles Bibliográficos
Autores principales: Parajuli, Prakash, Pandey, Ramesh Prasad, Koirala, Niranjan, Yoon, Yeo Joon, Kim, Byung-Gee, Sohng, Jae Kyung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052672/
https://www.ncbi.nlm.nih.gov/pubmed/24949266
http://dx.doi.org/10.1186/s13568-014-0031-1
Descripción
Sumario:Epothilones are extremely cytotoxic chemotherapeutic agents with epoxide, thiazole, and ketone groups that share equipotent kinetic similarity with taxol. The in vitro glycosylation catalyzed by uridine diphosphate glucosyltransferase (YjiC) from Bacillus licheniformis generated six novel epothilone A glycoside analouges including epothilone A 7-O-β-D-glucoside, epothilone A 7-O-β-D-galactoside, epothilone A 3,7-O-β-D-digalactoside, epothilone A 7-O-β-D-2-deoxyglucoside, epothilone A 7-O-β-L-rhamnoside, and epothilone A 7-O-β-L-fucoside. Epothilone A 7-O-β-D-glucoside was structurally elucidated by ultra-high performance liquid chromatography-photo diode array (UPLC-PDA) conjugated with high resolution quantitative time-of-flight-electrospray ionization mass spectroscopy (HR-QTOF ESI-MS/MS) supported by one-and two-dimensional nuclear magnetic resonance studies whereas other epothilone A glycosides were characterized by UPLC-PDA and HR-QTOF ESI-MS/MS analyses. The time dependent conversion study of epothilone A to epothilone A 7-O-β-D-glucoside found to be maximum (~26%) between 3 h to 5 h incubation.