Cargando…
Transcriptional regulation of thylakoid galactolipid biosynthesis coordinated with chlorophyll biosynthesis during the development of chloroplasts in Arabidopsis
Biogenesis of thylakoid membranes in chloroplasts requires the coordinated synthesis of chlorophyll and photosynthetic proteins with the galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), which constitute the bulk of the thylakoid lipid matrix. MGD1 and DGD1 are...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052731/ https://www.ncbi.nlm.nih.gov/pubmed/24966866 http://dx.doi.org/10.3389/fpls.2014.00272 |
_version_ | 1782320278131441664 |
---|---|
author | Kobayashi, Koichi Fujii, Sho Sasaki, Daichi Baba, Shinsuke Ohta, Hiroyuki Masuda, Tatsuru Wada, Hajime |
author_facet | Kobayashi, Koichi Fujii, Sho Sasaki, Daichi Baba, Shinsuke Ohta, Hiroyuki Masuda, Tatsuru Wada, Hajime |
author_sort | Kobayashi, Koichi |
collection | PubMed |
description | Biogenesis of thylakoid membranes in chloroplasts requires the coordinated synthesis of chlorophyll and photosynthetic proteins with the galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), which constitute the bulk of the thylakoid lipid matrix. MGD1 and DGD1 are the key enzymes of MGDG and DGDG synthesis, respectively. We investigated the expression profiles of MGD1 and DGD1 in Arabidopsis to identify the transcriptional regulation that coordinates galactolipid synthesis with the synthesis of chlorophyll and photosynthetic proteins during chloroplast biogenesis. The expression of both MGD1 and DGD1 was repressed in response to defects in chlorophyll synthesis. Moreover, these genes were downregulated by norflurazon-induced chloroplast malfunction via the GENOMES-UNCOUPLED1-mediated plastid signaling pathway. Similar to other photosynthesis-associated nuclear genes, the expression of MGD1 and DGD1 was induced by light, in which both cytokinin signaling and LONG HYPOCOTYL5-mediated light signaling played crucial roles. The expression of these galactolipid-synthesis genes, and particularly that of DGD1 under continuous light, was strongly affected by the activities of the GOLDEN2-LIKE transcription factors, which are potent regulators of chlorophyll synthesis and chloroplast biogenesis. These results suggest tight transcriptional coordination of galactolipid synthesis with the formation of the photosynthetic chlorophyll–protein complexes during leaf development. Meanwhile, unlike the photosynthetic genes, the galactolipid synthesis genes were not upregulated during chloroplast biogenesis in the roots, even though the galactolipids accumulated with chlorophylls, indicating the importance of post-transcriptional regulation of galactolipid synthesis during root greening. Our data suggest that plants utilize complex regulatory mechanisms to modify galactolipid synthesis with chloroplast development during plant growth. |
format | Online Article Text |
id | pubmed-4052731 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-40527312014-06-25 Transcriptional regulation of thylakoid galactolipid biosynthesis coordinated with chlorophyll biosynthesis during the development of chloroplasts in Arabidopsis Kobayashi, Koichi Fujii, Sho Sasaki, Daichi Baba, Shinsuke Ohta, Hiroyuki Masuda, Tatsuru Wada, Hajime Front Plant Sci Plant Science Biogenesis of thylakoid membranes in chloroplasts requires the coordinated synthesis of chlorophyll and photosynthetic proteins with the galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), which constitute the bulk of the thylakoid lipid matrix. MGD1 and DGD1 are the key enzymes of MGDG and DGDG synthesis, respectively. We investigated the expression profiles of MGD1 and DGD1 in Arabidopsis to identify the transcriptional regulation that coordinates galactolipid synthesis with the synthesis of chlorophyll and photosynthetic proteins during chloroplast biogenesis. The expression of both MGD1 and DGD1 was repressed in response to defects in chlorophyll synthesis. Moreover, these genes were downregulated by norflurazon-induced chloroplast malfunction via the GENOMES-UNCOUPLED1-mediated plastid signaling pathway. Similar to other photosynthesis-associated nuclear genes, the expression of MGD1 and DGD1 was induced by light, in which both cytokinin signaling and LONG HYPOCOTYL5-mediated light signaling played crucial roles. The expression of these galactolipid-synthesis genes, and particularly that of DGD1 under continuous light, was strongly affected by the activities of the GOLDEN2-LIKE transcription factors, which are potent regulators of chlorophyll synthesis and chloroplast biogenesis. These results suggest tight transcriptional coordination of galactolipid synthesis with the formation of the photosynthetic chlorophyll–protein complexes during leaf development. Meanwhile, unlike the photosynthetic genes, the galactolipid synthesis genes were not upregulated during chloroplast biogenesis in the roots, even though the galactolipids accumulated with chlorophylls, indicating the importance of post-transcriptional regulation of galactolipid synthesis during root greening. Our data suggest that plants utilize complex regulatory mechanisms to modify galactolipid synthesis with chloroplast development during plant growth. Frontiers Media S.A. 2014-06-11 /pmc/articles/PMC4052731/ /pubmed/24966866 http://dx.doi.org/10.3389/fpls.2014.00272 Text en Copyright © 2014 Kobayashi, Fujii, Sasaki, Baba, Ohta, Masuda and Wada. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Kobayashi, Koichi Fujii, Sho Sasaki, Daichi Baba, Shinsuke Ohta, Hiroyuki Masuda, Tatsuru Wada, Hajime Transcriptional regulation of thylakoid galactolipid biosynthesis coordinated with chlorophyll biosynthesis during the development of chloroplasts in Arabidopsis |
title | Transcriptional regulation of thylakoid galactolipid biosynthesis coordinated with chlorophyll biosynthesis during the development of chloroplasts in Arabidopsis |
title_full | Transcriptional regulation of thylakoid galactolipid biosynthesis coordinated with chlorophyll biosynthesis during the development of chloroplasts in Arabidopsis |
title_fullStr | Transcriptional regulation of thylakoid galactolipid biosynthesis coordinated with chlorophyll biosynthesis during the development of chloroplasts in Arabidopsis |
title_full_unstemmed | Transcriptional regulation of thylakoid galactolipid biosynthesis coordinated with chlorophyll biosynthesis during the development of chloroplasts in Arabidopsis |
title_short | Transcriptional regulation of thylakoid galactolipid biosynthesis coordinated with chlorophyll biosynthesis during the development of chloroplasts in Arabidopsis |
title_sort | transcriptional regulation of thylakoid galactolipid biosynthesis coordinated with chlorophyll biosynthesis during the development of chloroplasts in arabidopsis |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052731/ https://www.ncbi.nlm.nih.gov/pubmed/24966866 http://dx.doi.org/10.3389/fpls.2014.00272 |
work_keys_str_mv | AT kobayashikoichi transcriptionalregulationofthylakoidgalactolipidbiosynthesiscoordinatedwithchlorophyllbiosynthesisduringthedevelopmentofchloroplastsinarabidopsis AT fujiisho transcriptionalregulationofthylakoidgalactolipidbiosynthesiscoordinatedwithchlorophyllbiosynthesisduringthedevelopmentofchloroplastsinarabidopsis AT sasakidaichi transcriptionalregulationofthylakoidgalactolipidbiosynthesiscoordinatedwithchlorophyllbiosynthesisduringthedevelopmentofchloroplastsinarabidopsis AT babashinsuke transcriptionalregulationofthylakoidgalactolipidbiosynthesiscoordinatedwithchlorophyllbiosynthesisduringthedevelopmentofchloroplastsinarabidopsis AT ohtahiroyuki transcriptionalregulationofthylakoidgalactolipidbiosynthesiscoordinatedwithchlorophyllbiosynthesisduringthedevelopmentofchloroplastsinarabidopsis AT masudatatsuru transcriptionalregulationofthylakoidgalactolipidbiosynthesiscoordinatedwithchlorophyllbiosynthesisduringthedevelopmentofchloroplastsinarabidopsis AT wadahajime transcriptionalregulationofthylakoidgalactolipidbiosynthesiscoordinatedwithchlorophyllbiosynthesisduringthedevelopmentofchloroplastsinarabidopsis |