Cargando…
Breast Cancer Prognosis Risk Estimation Using Integrated Gene Expression and Clinical Data
Background. Novel prognostic markers are needed so newly diagnosed breast cancer patients do not undergo any unnecessary therapy. Various microarray gene expression datasets based studies have generated gene signatures to predict the prognosis outcomes, while ignoring the large amount of information...
Autores principales: | Saini, Ashish, Hou, Jingyu, Zhou, Wanlei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052785/ https://www.ncbi.nlm.nih.gov/pubmed/24949450 http://dx.doi.org/10.1155/2014/459203 |
Ejemplares similares
-
RRHGE: A Novel Approach to Classify the Estrogen Receptor Based Breast Cancer Subtypes
por: Saini, Ashish, et al.
Publicado: (2014) -
Stratification of Breast Cancer by Integrating Gene Expression Data and Clinical Variables
por: He, Zongzhen, et al.
Publicado: (2019) -
Breast cancer prognosis by combinatorial analysis of gene expression data
por: Alexe, Gabriela, et al.
Publicado: (2006) -
Bi-dimensional principal gene feature selection from big gene expression data
por: Hou, Xiaoqian, et al.
Publicado: (2022) -
Increased KIAA0101 gene expression associated with poor prognosis in breast cancer
por: Liu, Jiuyang, et al.
Publicado: (2021)