Cargando…
BACE1 Is Necessary for Experience-Dependent Homeostatic Synaptic Plasticity in Visual Cortex
Alzheimer's disease (AD) is the most common form of age-related dementia, which is thought to result from overproduction and/or reduced clearance of amyloid-beta (Aβ) peptides. Studies over the past few decades suggest that Aβ is produced in an activity-dependent manner and has physiological re...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053288/ https://www.ncbi.nlm.nih.gov/pubmed/24963413 http://dx.doi.org/10.1155/2014/128631 |
_version_ | 1782320349924294656 |
---|---|
author | Petrus, Emily Lee, Hey-Kyoung |
author_facet | Petrus, Emily Lee, Hey-Kyoung |
author_sort | Petrus, Emily |
collection | PubMed |
description | Alzheimer's disease (AD) is the most common form of age-related dementia, which is thought to result from overproduction and/or reduced clearance of amyloid-beta (Aβ) peptides. Studies over the past few decades suggest that Aβ is produced in an activity-dependent manner and has physiological relevance to normal brain functions. Similarly, physiological functions for β- and γ-secretases, the two key enzymes that produce Aβ by sequentially processing the amyloid precursor protein (APP), have been discovered over recent years. In particular, activity-dependent production of Aβ has been suggested to play a role in homeostatic regulation of excitatory synaptic function. There is accumulating evidence that activity-dependent immediate early gene Arc is an activity “sensor,” which acts upstream of Aβ production and triggers AMPA receptor endocytosis to homeostatically downregulate the strength of excitatory synaptic transmission. We previously reported that Arc is critical for sensory experience-dependent homeostatic reduction of excitatory synaptic transmission in the superficial layers of visual cortex. Here we demonstrate that mice lacking the major neuronal β-secretase, BACE1, exhibit a similar phenotype: stronger basal excitatory synaptic transmission and failure to adapt to changes in visual experience. Our results indicate that BACE1 plays an essential role in sensory experience-dependent homeostatic synaptic plasticity in the neocortex. |
format | Online Article Text |
id | pubmed-4053288 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-40532882014-06-24 BACE1 Is Necessary for Experience-Dependent Homeostatic Synaptic Plasticity in Visual Cortex Petrus, Emily Lee, Hey-Kyoung Neural Plast Research Article Alzheimer's disease (AD) is the most common form of age-related dementia, which is thought to result from overproduction and/or reduced clearance of amyloid-beta (Aβ) peptides. Studies over the past few decades suggest that Aβ is produced in an activity-dependent manner and has physiological relevance to normal brain functions. Similarly, physiological functions for β- and γ-secretases, the two key enzymes that produce Aβ by sequentially processing the amyloid precursor protein (APP), have been discovered over recent years. In particular, activity-dependent production of Aβ has been suggested to play a role in homeostatic regulation of excitatory synaptic function. There is accumulating evidence that activity-dependent immediate early gene Arc is an activity “sensor,” which acts upstream of Aβ production and triggers AMPA receptor endocytosis to homeostatically downregulate the strength of excitatory synaptic transmission. We previously reported that Arc is critical for sensory experience-dependent homeostatic reduction of excitatory synaptic transmission in the superficial layers of visual cortex. Here we demonstrate that mice lacking the major neuronal β-secretase, BACE1, exhibit a similar phenotype: stronger basal excitatory synaptic transmission and failure to adapt to changes in visual experience. Our results indicate that BACE1 plays an essential role in sensory experience-dependent homeostatic synaptic plasticity in the neocortex. Hindawi Publishing Corporation 2014 2014-05-14 /pmc/articles/PMC4053288/ /pubmed/24963413 http://dx.doi.org/10.1155/2014/128631 Text en Copyright © 2014 E. Petrus and H.-K. Lee. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Petrus, Emily Lee, Hey-Kyoung BACE1 Is Necessary for Experience-Dependent Homeostatic Synaptic Plasticity in Visual Cortex |
title | BACE1 Is Necessary for Experience-Dependent Homeostatic Synaptic Plasticity in Visual Cortex |
title_full | BACE1 Is Necessary for Experience-Dependent Homeostatic Synaptic Plasticity in Visual Cortex |
title_fullStr | BACE1 Is Necessary for Experience-Dependent Homeostatic Synaptic Plasticity in Visual Cortex |
title_full_unstemmed | BACE1 Is Necessary for Experience-Dependent Homeostatic Synaptic Plasticity in Visual Cortex |
title_short | BACE1 Is Necessary for Experience-Dependent Homeostatic Synaptic Plasticity in Visual Cortex |
title_sort | bace1 is necessary for experience-dependent homeostatic synaptic plasticity in visual cortex |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053288/ https://www.ncbi.nlm.nih.gov/pubmed/24963413 http://dx.doi.org/10.1155/2014/128631 |
work_keys_str_mv | AT petrusemily bace1isnecessaryforexperiencedependenthomeostaticsynapticplasticityinvisualcortex AT leeheykyoung bace1isnecessaryforexperiencedependenthomeostaticsynapticplasticityinvisualcortex |