Cargando…
Concurrent evolution of cancer cachexia and heart failure: bilateral effects exist
Cancer cachexia is defined as a multifactorial syndrome of involuntary weight loss characterized by an ongoing loss of skeletal muscle mass and progressive functional impairment. It is postulated that cardiac dysfunction/atrophy parallels skeletal muscle atrophy in cancer cachexia. Cardiotoxic chemo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053562/ https://www.ncbi.nlm.nih.gov/pubmed/24627226 http://dx.doi.org/10.1007/s13539-014-0137-y |
Sumario: | Cancer cachexia is defined as a multifactorial syndrome of involuntary weight loss characterized by an ongoing loss of skeletal muscle mass and progressive functional impairment. It is postulated that cardiac dysfunction/atrophy parallels skeletal muscle atrophy in cancer cachexia. Cardiotoxic chemotherapy may additionally result in cardiac dysfunction and heart failure in some cancer patients. Heart failure thus may be a consequence of either ongoing cachexia or chemotherapy-induced cardiotoxicity; at the same time, heart failure can result in cachexia, especially muscle wasting. Therefore, the subsequent heart failure and cardiac cachexia can exacerbate the existing cancer-induced cachexia. We discuss these bilateral effects between cancer cachexia and heart failure in cancer patients. Since cachectic patients are more susceptible to chemotherapy-induced toxicity overall, this may also include increased cardiotoxicity of antineoplastic agents. Patients with cachexia could thus be doubly unfortunate, with cachexia-related cardiac dysfunction/heart failure and increased susceptibility to cardiotoxicity during treatment. Cardiovascular risk factors as well as pre-existing heart failure seem to exacerbate cardiac susceptibility against cachexia and increase the rate of cardiac cachexia. Hence, chemotherapy-induced cardiotoxicity, cardiovascular risk factors, and pre-existing heart failure may accelerate the vicious cycle of cachexia-heart failure. The impact of cancer cachexia on cardiac dysfunction/heart failure in cancer patients has not been thoroughly studied. A combination of serial echocardiography for detection of cachexia-induced cardiac remodeling and computed tomography image analysis for detection of skeletal muscle wasting would appear a practical and non-invasive approach to develop an understanding of cardiac structural/functional alterations that are directly related to cachexia. |
---|