Cargando…

White matter microstructure in late middle-age: Effects of apolipoprotein E4 and parental family history of Alzheimer's disease

INTRODUCTION: Little is still known about the effects of risk factors for Alzheimer's disease (AD) on white matter microstructure in cognitively healthy adults. The purpose of this cross-sectional study was to assess the effect of two well-known risk factors for AD, parental family history and...

Descripción completa

Detalles Bibliográficos
Autores principales: Adluru, Nagesh, Destiche, Daniel J., Lu, Sharon Yuan-Fu, Doran, Samuel T., Birdsill, Alex C., Melah, Kelsey E., Okonkwo, Ozioma C., Alexander, Andrew L., Dowling, N. Maritza, Johnson, Sterling C., Sager, Mark A., Bendlin, Barbara B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053649/
https://www.ncbi.nlm.nih.gov/pubmed/24936424
http://dx.doi.org/10.1016/j.nicl.2014.04.008
_version_ 1782320411121287168
author Adluru, Nagesh
Destiche, Daniel J.
Lu, Sharon Yuan-Fu
Doran, Samuel T.
Birdsill, Alex C.
Melah, Kelsey E.
Okonkwo, Ozioma C.
Alexander, Andrew L.
Dowling, N. Maritza
Johnson, Sterling C.
Sager, Mark A.
Bendlin, Barbara B.
author_facet Adluru, Nagesh
Destiche, Daniel J.
Lu, Sharon Yuan-Fu
Doran, Samuel T.
Birdsill, Alex C.
Melah, Kelsey E.
Okonkwo, Ozioma C.
Alexander, Andrew L.
Dowling, N. Maritza
Johnson, Sterling C.
Sager, Mark A.
Bendlin, Barbara B.
author_sort Adluru, Nagesh
collection PubMed
description INTRODUCTION: Little is still known about the effects of risk factors for Alzheimer's disease (AD) on white matter microstructure in cognitively healthy adults. The purpose of this cross-sectional study was to assess the effect of two well-known risk factors for AD, parental family history and APOE4 genotype. METHODS: This study included 343 participants from the Wisconsin Registry for Alzheimer's Prevention, who underwent diffusion tensor imaging (DTI). A region of interest analysis was performed on fractional anisotropy maps, in addition to mean, radial, and axial diffusivity maps, aligned to a common template space using a diffeomorphic, tensor-based registration method. The analysis focused on brain regions known to be affected in AD including the corpus callosum, superior longitudinal fasciculus, fornix, cingulum, and uncinate fasciculus. Analyses assessed the impact of APOE4, parental family history of AD, age, and sex on white matter microstructure in late middle-aged participants (aged 47–76 years). RESULTS: Both APOE4 and parental family history were associated with microstructural white matter differences. Participants with parental family history of AD had higher FA in the genu of the corpus callosum and the superior longitudinal fasciculus. We observed an interaction between family history and APOE4, where participants who were family history positive but APOE4 negative had lower axial diffusivity in the uncinate fasciculus, and participants who were both family history positive and APOE4 positive had higher axial diffusivity in this region. We also observed an interaction between APOE4 and age, whereby older participants (=65 years of age) who were APOE4 carriers, had higher MD in the superior longitudinal fasciculus and in the portion of the cingulum bundle running adjacent to the cingulate cortex, compared to non-carriers. Older participants who were APOE4 carriers also showed higher radial diffusivity in the genu compared to non-carriers. Across all participants, age had an effect on FA, MD, and axial and radial diffusivities. Sex differences were observed in FA and radial diffusivity. CONCLUSION: APOE4 genotype, parental family history of AD, age, and sex are all associated with microstructural white matter differences in late middle-aged adults. In participants at risk for AD, alterations in diffusion characteristics—both expected and unexpected—may represent cellular changes occurring at the earliest disease stages, but further work is needed. Higher mean, radial, and axial diffusivities were observed in participants who are more likely to be experiencing later stage preclinical pathology, including participants who were both older and carried APOE4, or who were positive for both APOE4 and parental family history of AD.
format Online
Article
Text
id pubmed-4053649
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-40536492014-06-16 White matter microstructure in late middle-age: Effects of apolipoprotein E4 and parental family history of Alzheimer's disease Adluru, Nagesh Destiche, Daniel J. Lu, Sharon Yuan-Fu Doran, Samuel T. Birdsill, Alex C. Melah, Kelsey E. Okonkwo, Ozioma C. Alexander, Andrew L. Dowling, N. Maritza Johnson, Sterling C. Sager, Mark A. Bendlin, Barbara B. Neuroimage Clin Article INTRODUCTION: Little is still known about the effects of risk factors for Alzheimer's disease (AD) on white matter microstructure in cognitively healthy adults. The purpose of this cross-sectional study was to assess the effect of two well-known risk factors for AD, parental family history and APOE4 genotype. METHODS: This study included 343 participants from the Wisconsin Registry for Alzheimer's Prevention, who underwent diffusion tensor imaging (DTI). A region of interest analysis was performed on fractional anisotropy maps, in addition to mean, radial, and axial diffusivity maps, aligned to a common template space using a diffeomorphic, tensor-based registration method. The analysis focused on brain regions known to be affected in AD including the corpus callosum, superior longitudinal fasciculus, fornix, cingulum, and uncinate fasciculus. Analyses assessed the impact of APOE4, parental family history of AD, age, and sex on white matter microstructure in late middle-aged participants (aged 47–76 years). RESULTS: Both APOE4 and parental family history were associated with microstructural white matter differences. Participants with parental family history of AD had higher FA in the genu of the corpus callosum and the superior longitudinal fasciculus. We observed an interaction between family history and APOE4, where participants who were family history positive but APOE4 negative had lower axial diffusivity in the uncinate fasciculus, and participants who were both family history positive and APOE4 positive had higher axial diffusivity in this region. We also observed an interaction between APOE4 and age, whereby older participants (=65 years of age) who were APOE4 carriers, had higher MD in the superior longitudinal fasciculus and in the portion of the cingulum bundle running adjacent to the cingulate cortex, compared to non-carriers. Older participants who were APOE4 carriers also showed higher radial diffusivity in the genu compared to non-carriers. Across all participants, age had an effect on FA, MD, and axial and radial diffusivities. Sex differences were observed in FA and radial diffusivity. CONCLUSION: APOE4 genotype, parental family history of AD, age, and sex are all associated with microstructural white matter differences in late middle-aged adults. In participants at risk for AD, alterations in diffusion characteristics—both expected and unexpected—may represent cellular changes occurring at the earliest disease stages, but further work is needed. Higher mean, radial, and axial diffusivities were observed in participants who are more likely to be experiencing later stage preclinical pathology, including participants who were both older and carried APOE4, or who were positive for both APOE4 and parental family history of AD. Elsevier 2014-04-21 /pmc/articles/PMC4053649/ /pubmed/24936424 http://dx.doi.org/10.1016/j.nicl.2014.04.008 Text en © 2014 The Authors http://creativecommons.org/licenses/by/3.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Article
Adluru, Nagesh
Destiche, Daniel J.
Lu, Sharon Yuan-Fu
Doran, Samuel T.
Birdsill, Alex C.
Melah, Kelsey E.
Okonkwo, Ozioma C.
Alexander, Andrew L.
Dowling, N. Maritza
Johnson, Sterling C.
Sager, Mark A.
Bendlin, Barbara B.
White matter microstructure in late middle-age: Effects of apolipoprotein E4 and parental family history of Alzheimer's disease
title White matter microstructure in late middle-age: Effects of apolipoprotein E4 and parental family history of Alzheimer's disease
title_full White matter microstructure in late middle-age: Effects of apolipoprotein E4 and parental family history of Alzheimer's disease
title_fullStr White matter microstructure in late middle-age: Effects of apolipoprotein E4 and parental family history of Alzheimer's disease
title_full_unstemmed White matter microstructure in late middle-age: Effects of apolipoprotein E4 and parental family history of Alzheimer's disease
title_short White matter microstructure in late middle-age: Effects of apolipoprotein E4 and parental family history of Alzheimer's disease
title_sort white matter microstructure in late middle-age: effects of apolipoprotein e4 and parental family history of alzheimer's disease
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053649/
https://www.ncbi.nlm.nih.gov/pubmed/24936424
http://dx.doi.org/10.1016/j.nicl.2014.04.008
work_keys_str_mv AT adlurunagesh whitemattermicrostructureinlatemiddleageeffectsofapolipoproteine4andparentalfamilyhistoryofalzheimersdisease
AT destichedanielj whitemattermicrostructureinlatemiddleageeffectsofapolipoproteine4andparentalfamilyhistoryofalzheimersdisease
AT lusharonyuanfu whitemattermicrostructureinlatemiddleageeffectsofapolipoproteine4andparentalfamilyhistoryofalzheimersdisease
AT doransamuelt whitemattermicrostructureinlatemiddleageeffectsofapolipoproteine4andparentalfamilyhistoryofalzheimersdisease
AT birdsillalexc whitemattermicrostructureinlatemiddleageeffectsofapolipoproteine4andparentalfamilyhistoryofalzheimersdisease
AT melahkelseye whitemattermicrostructureinlatemiddleageeffectsofapolipoproteine4andparentalfamilyhistoryofalzheimersdisease
AT okonkwooziomac whitemattermicrostructureinlatemiddleageeffectsofapolipoproteine4andparentalfamilyhistoryofalzheimersdisease
AT alexanderandrewl whitemattermicrostructureinlatemiddleageeffectsofapolipoproteine4andparentalfamilyhistoryofalzheimersdisease
AT dowlingnmaritza whitemattermicrostructureinlatemiddleageeffectsofapolipoproteine4andparentalfamilyhistoryofalzheimersdisease
AT johnsonsterlingc whitemattermicrostructureinlatemiddleageeffectsofapolipoproteine4andparentalfamilyhistoryofalzheimersdisease
AT sagermarka whitemattermicrostructureinlatemiddleageeffectsofapolipoproteine4andparentalfamilyhistoryofalzheimersdisease
AT bendlinbarbarab whitemattermicrostructureinlatemiddleageeffectsofapolipoproteine4andparentalfamilyhistoryofalzheimersdisease