Cargando…
voom: precision weights unlock linear model analysis tools for RNA-seq read counts
New normal linear modeling strategies are presented for analyzing read counts from RNA-seq experiments. The voom method estimates the mean-variance relationship of the log-counts, generates a precision weight for each observation and enters these into the limma empirical Bayes analysis pipeline. Thi...
Autores principales: | Law, Charity W, Chen, Yunshun, Shi, Wei, Smyth, Gordon K |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053721/ https://www.ncbi.nlm.nih.gov/pubmed/24485249 http://dx.doi.org/10.1186/gb-2014-15-2-r29 |
Ejemplares similares
-
voomDDA: discovery of diagnostic biomarkers and classification of RNA-seq data
por: Zararsiz, Gokmen, et al.
Publicado: (2017) -
Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications
por: Van den Berge, Koen, et al.
Publicado: (2018) -
Modeling group heteroscedasticity in single-cell RNA-seq pseudo-bulk data
por: You, Yue, et al.
Publicado: (2023) -
Quantile normalization of single-cell RNA-seq read counts without unique molecular identifiers
por: Townes, F. William, et al.
Publicado: (2020) -
From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline
por: Chen, Yunshun, et al.
Publicado: (2016)