Cargando…

BayMeth: improved DNA methylation quantification for affinity capture sequencing data using a flexible Bayesian approach

Affinity capture of DNA methylation combined with high-throughput sequencing strikes a good balance between the high cost of whole genome bisulfite sequencing and the low coverage of methylation arrays. We present BayMeth, an empirical Bayes approach that uses a fully methylated control sample to tr...

Descripción completa

Detalles Bibliográficos
Autores principales: Riebler, Andrea, Menigatti, Mirco, Song, Jenny Z, Statham, Aaron L, Stirzaker, Clare, Mahmud, Nadiya, Mein, Charles A, Clark, Susan J, Robinson, Mark D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053803/
https://www.ncbi.nlm.nih.gov/pubmed/24517713
http://dx.doi.org/10.1186/gb-2014-15-2-r35
_version_ 1782320442538721280
author Riebler, Andrea
Menigatti, Mirco
Song, Jenny Z
Statham, Aaron L
Stirzaker, Clare
Mahmud, Nadiya
Mein, Charles A
Clark, Susan J
Robinson, Mark D
author_facet Riebler, Andrea
Menigatti, Mirco
Song, Jenny Z
Statham, Aaron L
Stirzaker, Clare
Mahmud, Nadiya
Mein, Charles A
Clark, Susan J
Robinson, Mark D
author_sort Riebler, Andrea
collection PubMed
description Affinity capture of DNA methylation combined with high-throughput sequencing strikes a good balance between the high cost of whole genome bisulfite sequencing and the low coverage of methylation arrays. We present BayMeth, an empirical Bayes approach that uses a fully methylated control sample to transform observed read counts into regional methylation levels. In our model, inefficient capture can readily be distinguished from low methylation levels. BayMeth improves on existing methods, allows explicit modeling of copy number variation, and offers computationally efficient analytical mean and variance estimators. BayMeth is available in the Repitools Bioconductor package.
format Online
Article
Text
id pubmed-4053803
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-40538032014-06-12 BayMeth: improved DNA methylation quantification for affinity capture sequencing data using a flexible Bayesian approach Riebler, Andrea Menigatti, Mirco Song, Jenny Z Statham, Aaron L Stirzaker, Clare Mahmud, Nadiya Mein, Charles A Clark, Susan J Robinson, Mark D Genome Biol Method Affinity capture of DNA methylation combined with high-throughput sequencing strikes a good balance between the high cost of whole genome bisulfite sequencing and the low coverage of methylation arrays. We present BayMeth, an empirical Bayes approach that uses a fully methylated control sample to transform observed read counts into regional methylation levels. In our model, inefficient capture can readily be distinguished from low methylation levels. BayMeth improves on existing methods, allows explicit modeling of copy number variation, and offers computationally efficient analytical mean and variance estimators. BayMeth is available in the Repitools Bioconductor package. BioMed Central 2014 2014-02-11 /pmc/articles/PMC4053803/ /pubmed/24517713 http://dx.doi.org/10.1186/gb-2014-15-2-r35 Text en Copyright © 2014 Riebler et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Method
Riebler, Andrea
Menigatti, Mirco
Song, Jenny Z
Statham, Aaron L
Stirzaker, Clare
Mahmud, Nadiya
Mein, Charles A
Clark, Susan J
Robinson, Mark D
BayMeth: improved DNA methylation quantification for affinity capture sequencing data using a flexible Bayesian approach
title BayMeth: improved DNA methylation quantification for affinity capture sequencing data using a flexible Bayesian approach
title_full BayMeth: improved DNA methylation quantification for affinity capture sequencing data using a flexible Bayesian approach
title_fullStr BayMeth: improved DNA methylation quantification for affinity capture sequencing data using a flexible Bayesian approach
title_full_unstemmed BayMeth: improved DNA methylation quantification for affinity capture sequencing data using a flexible Bayesian approach
title_short BayMeth: improved DNA methylation quantification for affinity capture sequencing data using a flexible Bayesian approach
title_sort baymeth: improved dna methylation quantification for affinity capture sequencing data using a flexible bayesian approach
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053803/
https://www.ncbi.nlm.nih.gov/pubmed/24517713
http://dx.doi.org/10.1186/gb-2014-15-2-r35
work_keys_str_mv AT rieblerandrea baymethimproveddnamethylationquantificationforaffinitycapturesequencingdatausingaflexiblebayesianapproach
AT menigattimirco baymethimproveddnamethylationquantificationforaffinitycapturesequencingdatausingaflexiblebayesianapproach
AT songjennyz baymethimproveddnamethylationquantificationforaffinitycapturesequencingdatausingaflexiblebayesianapproach
AT stathamaaronl baymethimproveddnamethylationquantificationforaffinitycapturesequencingdatausingaflexiblebayesianapproach
AT stirzakerclare baymethimproveddnamethylationquantificationforaffinitycapturesequencingdatausingaflexiblebayesianapproach
AT mahmudnadiya baymethimproveddnamethylationquantificationforaffinitycapturesequencingdatausingaflexiblebayesianapproach
AT meincharlesa baymethimproveddnamethylationquantificationforaffinitycapturesequencingdatausingaflexiblebayesianapproach
AT clarksusanj baymethimproveddnamethylationquantificationforaffinitycapturesequencingdatausingaflexiblebayesianapproach
AT robinsonmarkd baymethimproveddnamethylationquantificationforaffinitycapturesequencingdatausingaflexiblebayesianapproach