Cargando…

GraphProt: modeling binding preferences of RNA-binding proteins

We present GraphProt, a computational framework for learning sequence- and structure-binding preferences of RNA-binding proteins (RBPs) from high-throughput experimental data. We benchmark GraphProt, demonstrating that the modeled binding preferences conform to the literature, and showcase the biolo...

Descripción completa

Detalles Bibliográficos
Autores principales: Maticzka, Daniel, Lange, Sita J, Costa, Fabrizio, Backofen, Rolf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053806/
https://www.ncbi.nlm.nih.gov/pubmed/24451197
http://dx.doi.org/10.1186/gb-2014-15-1-r17
_version_ 1782320443221344256
author Maticzka, Daniel
Lange, Sita J
Costa, Fabrizio
Backofen, Rolf
author_facet Maticzka, Daniel
Lange, Sita J
Costa, Fabrizio
Backofen, Rolf
author_sort Maticzka, Daniel
collection PubMed
description We present GraphProt, a computational framework for learning sequence- and structure-binding preferences of RNA-binding proteins (RBPs) from high-throughput experimental data. We benchmark GraphProt, demonstrating that the modeled binding preferences conform to the literature, and showcase the biological relevance and two applications of GraphProt models. First, estimated binding affinities correlate with experimental measurements. Second, predicted Ago2 targets display higher levels of expression upon Ago2 knockdown, whereas control targets do not. Computational binding models, such as those provided by GraphProt, are essential for predicting RBP binding sites and affinities in all tissues. GraphProt is freely available at http://www.bioinf.uni-freiburg.de/Software/GraphProt.
format Online
Article
Text
id pubmed-4053806
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-40538062014-06-12 GraphProt: modeling binding preferences of RNA-binding proteins Maticzka, Daniel Lange, Sita J Costa, Fabrizio Backofen, Rolf Genome Biol Method We present GraphProt, a computational framework for learning sequence- and structure-binding preferences of RNA-binding proteins (RBPs) from high-throughput experimental data. We benchmark GraphProt, demonstrating that the modeled binding preferences conform to the literature, and showcase the biological relevance and two applications of GraphProt models. First, estimated binding affinities correlate with experimental measurements. Second, predicted Ago2 targets display higher levels of expression upon Ago2 knockdown, whereas control targets do not. Computational binding models, such as those provided by GraphProt, are essential for predicting RBP binding sites and affinities in all tissues. GraphProt is freely available at http://www.bioinf.uni-freiburg.de/Software/GraphProt. BioMed Central 2014 2014-01-22 /pmc/articles/PMC4053806/ /pubmed/24451197 http://dx.doi.org/10.1186/gb-2014-15-1-r17 Text en Copyright © 2014 Maticzka et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Method
Maticzka, Daniel
Lange, Sita J
Costa, Fabrizio
Backofen, Rolf
GraphProt: modeling binding preferences of RNA-binding proteins
title GraphProt: modeling binding preferences of RNA-binding proteins
title_full GraphProt: modeling binding preferences of RNA-binding proteins
title_fullStr GraphProt: modeling binding preferences of RNA-binding proteins
title_full_unstemmed GraphProt: modeling binding preferences of RNA-binding proteins
title_short GraphProt: modeling binding preferences of RNA-binding proteins
title_sort graphprot: modeling binding preferences of rna-binding proteins
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053806/
https://www.ncbi.nlm.nih.gov/pubmed/24451197
http://dx.doi.org/10.1186/gb-2014-15-1-r17
work_keys_str_mv AT maticzkadaniel graphprotmodelingbindingpreferencesofrnabindingproteins
AT langesitaj graphprotmodelingbindingpreferencesofrnabindingproteins
AT costafabrizio graphprotmodelingbindingpreferencesofrnabindingproteins
AT backofenrolf graphprotmodelingbindingpreferencesofrnabindingproteins