Cargando…
GraphProt: modeling binding preferences of RNA-binding proteins
We present GraphProt, a computational framework for learning sequence- and structure-binding preferences of RNA-binding proteins (RBPs) from high-throughput experimental data. We benchmark GraphProt, demonstrating that the modeled binding preferences conform to the literature, and showcase the biolo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053806/ https://www.ncbi.nlm.nih.gov/pubmed/24451197 http://dx.doi.org/10.1186/gb-2014-15-1-r17 |
_version_ | 1782320443221344256 |
---|---|
author | Maticzka, Daniel Lange, Sita J Costa, Fabrizio Backofen, Rolf |
author_facet | Maticzka, Daniel Lange, Sita J Costa, Fabrizio Backofen, Rolf |
author_sort | Maticzka, Daniel |
collection | PubMed |
description | We present GraphProt, a computational framework for learning sequence- and structure-binding preferences of RNA-binding proteins (RBPs) from high-throughput experimental data. We benchmark GraphProt, demonstrating that the modeled binding preferences conform to the literature, and showcase the biological relevance and two applications of GraphProt models. First, estimated binding affinities correlate with experimental measurements. Second, predicted Ago2 targets display higher levels of expression upon Ago2 knockdown, whereas control targets do not. Computational binding models, such as those provided by GraphProt, are essential for predicting RBP binding sites and affinities in all tissues. GraphProt is freely available at http://www.bioinf.uni-freiburg.de/Software/GraphProt. |
format | Online Article Text |
id | pubmed-4053806 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-40538062014-06-12 GraphProt: modeling binding preferences of RNA-binding proteins Maticzka, Daniel Lange, Sita J Costa, Fabrizio Backofen, Rolf Genome Biol Method We present GraphProt, a computational framework for learning sequence- and structure-binding preferences of RNA-binding proteins (RBPs) from high-throughput experimental data. We benchmark GraphProt, demonstrating that the modeled binding preferences conform to the literature, and showcase the biological relevance and two applications of GraphProt models. First, estimated binding affinities correlate with experimental measurements. Second, predicted Ago2 targets display higher levels of expression upon Ago2 knockdown, whereas control targets do not. Computational binding models, such as those provided by GraphProt, are essential for predicting RBP binding sites and affinities in all tissues. GraphProt is freely available at http://www.bioinf.uni-freiburg.de/Software/GraphProt. BioMed Central 2014 2014-01-22 /pmc/articles/PMC4053806/ /pubmed/24451197 http://dx.doi.org/10.1186/gb-2014-15-1-r17 Text en Copyright © 2014 Maticzka et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Method Maticzka, Daniel Lange, Sita J Costa, Fabrizio Backofen, Rolf GraphProt: modeling binding preferences of RNA-binding proteins |
title | GraphProt: modeling binding preferences of RNA-binding proteins |
title_full | GraphProt: modeling binding preferences of RNA-binding proteins |
title_fullStr | GraphProt: modeling binding preferences of RNA-binding proteins |
title_full_unstemmed | GraphProt: modeling binding preferences of RNA-binding proteins |
title_short | GraphProt: modeling binding preferences of RNA-binding proteins |
title_sort | graphprot: modeling binding preferences of rna-binding proteins |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053806/ https://www.ncbi.nlm.nih.gov/pubmed/24451197 http://dx.doi.org/10.1186/gb-2014-15-1-r17 |
work_keys_str_mv | AT maticzkadaniel graphprotmodelingbindingpreferencesofrnabindingproteins AT langesitaj graphprotmodelingbindingpreferencesofrnabindingproteins AT costafabrizio graphprotmodelingbindingpreferencesofrnabindingproteins AT backofenrolf graphprotmodelingbindingpreferencesofrnabindingproteins |