Cargando…

GLiMMPS: robust statistical model for regulatory variation of alternative splicing using RNA-seq data

To characterize the genetic variation of alternative splicing, we develop GLiMMPS, a robust statistical method for detecting splicing quantitative trait loci (sQTLs) from RNA-seq data. GLiMMPS takes into account the individual variation in sequencing coverage and the noise prevalent in RNA-seq data....

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Keyan, Lu, Zhi-xiang, Park, Juw Won, Zhou, Qing, Xing, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4054007/
https://www.ncbi.nlm.nih.gov/pubmed/23876401
http://dx.doi.org/10.1186/gb-2013-14-7-r74
Descripción
Sumario:To characterize the genetic variation of alternative splicing, we develop GLiMMPS, a robust statistical method for detecting splicing quantitative trait loci (sQTLs) from RNA-seq data. GLiMMPS takes into account the individual variation in sequencing coverage and the noise prevalent in RNA-seq data. Analyses of simulated and real RNA-seq datasets demonstrate that GLiMMPS outperforms competing statistical models. Quantitative RT-PCR tests of 26 randomly selected GLiMMPS sQTLs yielded a validation rate of 100%. As population-scale RNA-seq studies become increasingly affordable and popular, GLiMMPS provides a useful tool for elucidating the genetic variation of alternative splicing in humans and model organisms.